Accessible Requires Authentication Published by De Gruyter July 7, 2021

Modeling Short-Range Interactions in Concentrated Newtonian Fiber Bundle Suspensions

N. Meyer, A. N. Hrymak and L. Kärger


Sheet Molding Compounds (SMC) offer a cost efficient way to enhance mechanical properties of a polymer with long discontinuous fibers, while maintaining formability to integrate functions, such as ribs, beads or other structural reinforcements. During SMC manufacturing, fibers remain often in a bundled configuration and the resulting fiber architecture determines part properties. Accurate prediction of this architecture by simulation of flow under consideration of the transient rheology and transient fiber orientations can speed up the development process. In particular, the interaction of bundles is of significance to predict molding pressures correctly in a direct simulation approach, which resolves individual fiber bundles. Thus, this work investigates the tangential short-range lubrication forces between fiber bundles with analytical and numerical techniques. A relation between the effective sheared gap between bundles and the bundle separation distance at the contact point is found and compared to experimental results from literature. The result is implemented in an ABAQUS contact subroutine to incorporate short-range interactions in a direct bundle simulation framework.

Nils Meyer, Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology, Rintheimer Querallee 2, 76131 Karlsruhe, Germany


Abrams, L. M., Castro, J. M., “Predicting Molding Forces during Sheet Molding Compound (SMC) Compression Molding. I: Model Development”, Polym. Compos., 24, 291–303 (2003), DOI:10.1002/pc.10029 Search in Google Scholar

Alnersson, G., Tahir, M. W., Ljung, A.-L. and Lundström, T. S., “Review of the Numerical Modeling of Compression Molding of Sheet Molding Compound”, Processes, 8, 179–190 (2020), DOI:10.3390/pr8020179 Search in Google Scholar

Barone, M. R., Caulk, D. A., “A Model for the Flow of a Chopped Fiber Reinforced Polymer Compound in Compression Molding”. J. Appl. Mech., 53, 361–371 (1986), DOI:10.1115/1.3171765 Search in Google Scholar

Batchelor, G. K., “Slender-Body Theory for Particles of Arbitrary Cross-Section in Stokes Flow”, J. Fluid Mech., 44, 419–440 (1970), DOI:10.1017/S002211207000191X Search in Google Scholar

Batchelor, G. K., “The Stress Generated in a Non-Dilute Suspension of Elongated Particles by Pure Straining Motion”, J. Fluid Mech., 46, 813–829 (1971), DOI:10.1017/S0022112071000879 Search in Google Scholar

Bertóti, R., Böhlke, T., “Flow-Induced Anisotropic Viscosity in Short FRPs”, Mechancis of Advancd Materials and Modern Processes, 3, 1–12 (2017), DOI:10.1186/s40759-016-0016-7 Search in Google Scholar

Butler, J. E., Snook, B., “Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers”, Annu. Rev. Fluid Mech., 50, 299 – 318 (2018), DOI:10.1146/annurev-fluid-122316-045144 Search in Google Scholar

Dinh, S. M., Armstrong, R. C., “A Rheological Equation of State for Semiconcentrated Fiber Suspensions”, J. Rheol., 28, 207–227 (1984), DOI:10.1122/1.549748 Search in Google Scholar

Djalili-Moghaddam, M., Toll, S., “A Model for Short-Range Interactions in Fibre Suspensions”, J. Non-Newtonian Fluid Mech., 132, 73–83 (2005), DOI:10.1016/j.jnnfm.2005.08.014 Search in Google Scholar

Dumont, P. J. J., Orgéas, L., Le Corre, S. and Favier, D., “Anisotropic Viscous Behavior of Sheet Molding Compounds (SMC) during Compression Molding”, Int. J. Plast., 19, 625–646 (2003), DOI:10.1016/S0749-6419(01)00077-8 Search in Google Scholar

Dumont, P. J. J., Vassal, J.-P., Orgéas, L., Michaud, V., Favier, D. and Månson, J.-A. E., “Processing, Characterisation and Rheology of Transparent Concentrated Fibre-Bundle Suspensions”, Rheol. Acta, 46, 639–651 (2007), DOI:10.1007/s00397-006-0153-8 Search in Google Scholar

Folgar, F., Tucker, C. L., “Orientation Behavior of Fibers in Concentrated Suspensions”, J. Reinf. Plast. Compos., 3, 98–119 (1984), DOI:10.1177/073168448400300201 Search in Google Scholar

Görthofer, J., Meyer, N., Pallicity, T. D., Schöttl, L., Trauth, A., Schemmann, M., Hohberg, M., Pinter, P., Elsner, P., Henning, F., Hrymak, A. N., Seelig, T., Weidenmann, K., Kärger, L. and Böhlke, T., “Virtual Process Chain of Sheet Molding Compound: Development, Validation and Perspectives”, Composites Part B, 169, 133–147 (2019), DOI:10.1016/j.compositesb.2019.04.001 Search in Google Scholar

Guiraud, O., Orgéas, L., Dumont, P. J. J. and Rolland Du Roscoat, S., “Microstructure and Deformation Micromechanisms of Concentrated Fiber Bundle Suspensions: An Analysis Combining X-Ray Microtomography and Pull-Out Tests”, J. Rheol., 56, 593–623 (2012), DOI:10.1122/1.3698185 Search in Google Scholar

Hinch, E. J., Leal, L. G., “Time-Dependent Shear Flows of a Suspension of Particles with Weak Brownian Rotations”, J. Fluid Mech., 57, 753–767 (1973), DOI:10.1017/S0022112073001990 Search in Google Scholar

Hohberg, M., Kärger, L., Henning, F. and Hrymak, A. N., “Rheological Measurements and Rheological Shell Model Considering the Compressible Behavior of Long Fiber Reinforced Sheet Molding Compound (SMC)", Composites Part A, 95, 110–117 (2017), DOI:10.1016/j.compositesa.2017.01.006 Search in Google Scholar

Kugler, S. K., Dey, A. P., Saad, S., Cruz, C., Kech, A. and Osswald, T., “A Flow-Dependent Fiber Orientation Model”, J. Compos. Sci., 4, 96–117 (2020), DOI:10.3390/jcs4030096 Search in Google Scholar

Kuhn, C., Walter, I., Täger, O. and Osswald, T., “Simulative Prediction of Fiber-Matrix Separation in Rib Filling During Compression Molding Using a Direct Fiber Simulation”, J. Compos. Sci., 2, 2–12 (2017), DOI:10.3390/jcs2010002 Search in Google Scholar

Le, T.-H., Dumont, P. J. J., Orgéas, L., Favier, D., Salvo, L. and Boller, E., “X-Ray Phase Contrast Microtomography for the Analysis of the Fibrous Microstructure of SMC Composites”, Composites Part A, 39, 91–103 (2008), DOI:10.1016/j.compositesa.2007.08.027 Search in Google Scholar

Le Corre, S., Dumont, P. J. J., Orgéas, L. and Favier, D., “Rheology of Highly Concentrated Planar Fiber Suspensions”, J. Rheol., 49, 1029–1058 (2005), DOI:10.1122/1.1993594 Search in Google Scholar

Lee, C.-C., Folgar, F. and Tucker, C. L., “Simulation of Compression Molding for Fiber-Reinforced Thermosetting Polymers”, Journal of Engineering for Industry, 106, 114–125 (1984), DOI:10.1115/1.3185921 Search in Google Scholar

Londoño-Hurtado, A., “Mechanistic Models for Fiber Flow", Ph. D. Thesis, University of Wisconsin– Madison, USA (2009) Search in Google Scholar

Mackaplow, M. B., Shaqfeh, E. S. G., “A Numerical Study of the Rheological Properties of Suspensions of Rigid, Non-Brownian Fibres”, J. Fluid Mech., 329, 155–186 (1996), DOI:10.1017/S0022112096008889 Search in Google Scholar

Meyer, N., Saburow, O., Hohberg, M., Hrymak, A. N., Henning, F. and Kärger, L., “Parameter Identification of Fiber Orientation Models Based on Direct Fiber Simulation with Smoothed Particle Hydrodynamics”, J. Compos. Sci., 4, 77–96 (2020a), DOI:10.3390/jcs4020077 Search in Google Scholar

Meyer, N., Schöttl, L., Bretz, L., Hrymak, A. N. and Kärger, L., “Direct Bundle Simulation Approach for the Compression Molding Process of Sheet Molding Compound”, Composites Part A, 132, 105809 (2020b), DOI:10.1016/j.compositesa.2020.105809 Search in Google Scholar

Motaghi, A., Hrymak, A. N., “Microstructure Characterization in Direct Sheet Molding Compound”, Polym. Compos., 40, E69–E77 (2019), DOI:10.1002/pc.24495 Search in Google Scholar

Orgéas, L., Dumont, P. J. J. and Corre, S. L., “Chapter 5 Rheology of Highly Concentrated Fiber Suspensions”, in Rheology of Non-Spherical Particle Suspensions, Elsevier, Kidlington, p. 119–166 (2015), DOI:10.1016/B978-1-78548-036-2.50005-8 Search in Google Scholar

Osswald, T. A., Tucker, C. L., “A Boundary Element Simulation of Compression Mold Filling”, Polymer Engineering and Science 28, 413–420 (1988), DOI:10.1002/pen.760280703 Search in Google Scholar

Osswald, T. A., Tucker, C. L., “Compression Mold Filling Simulation for Non-Planar Parts”, Int. Polym. Proc., 5, 79–87 (1990), DOI:10.3139/217.900079 Search in Google Scholar

Phelps, J. H., Tucker, C. L., “An Anisotropic Rotary Diffusion Model for Fiber Orientation in Short and Long-Fiber Thermoplastics”, J. of Non-Newtonian Fluid Mech., 156, 165–176 (2009), DOI:10.1016/j.jnnfm.2008.08.002 Search in Google Scholar

Servais, C., Luciani, A. and Månson, J.-A. E., “Fiber–Fiber Interaction in Concentrated Suspensions: Dispersed Fiber Bundles”, J. Rheol., 43, 1005–1018 (1999a), DOI:10.1122/1.551015 Search in Google Scholar

Servais, C., Månson, J.-A. E. and Toll, S., “Fiber–Fiber Interaction in Concentrated Suspensions: Disperse Fibers”, J. Rheol., 43, 991– 1004 (1999b), DOI:10.1122/1.551014 Search in Google Scholar

Shaqfeh, E. S. G., Fredrickson, G. H., “The Hydrodynamic Stress in a Suspension of Rods”, Physics of Fluids A: Fluid Dynamics, 2, 7– 24 (1990), DOI:10.1063/1.857683 Search in Google Scholar

Silva-Nieto, R. J., Fisher, B. C. and Birley, A. W., “Predicting Mold Flow for Unsaturated Polyester Resin Sheet Molding Compounds”, Polym. Compos., 1, 14–23 (1980), DOI:10.1002/pc.750010105 Search in Google Scholar

Sommer, D. E., Favaloro, A. J. and Pipes, R. B., “Coupling Anisotropic Viscosity and Fiber Orientation in Applications to Squeeze Flow", J. Rheol., 62, 669–679 (2018), DOI:10.1122/1.5013098 Search in Google Scholar

Toll, S., “Packing Mechanics of Fiber Reinforcements”, Polym. Eng. Sci., 38, 1337–1350 (1998), DOI:10.1002/pen.10304 Search in Google Scholar

Tucker, C. L., Folgar, F., “A Model of Compression Mold Filling”, Polym. Eng. Sci., 23, 69–73 (1983), DOI:10.1002/pen.760230204 Search in Google Scholar

Yamane, Y., Kaneda, Y. and Dio, M., “Numerical Simulation of Semi-Dilute Suspensions of Rodlike Particles in Shear Flow”, J. Non-Newtonian Fluid Mech., 54, 405–421 (1994), DOI:10.1016/0377-0257(94)80033-2 Search in Google Scholar


The research documented in this manuscript has been funded by the German Research Foundation (DFG) within the International Research Training Group “Integrated engineering of continuous-discontinuous long fiber-reinforced polymer structures” (GRK 2078). The support by the German Research Foundation (DFG) is gratefully acknowledged.

Received: 2020-10-13
Accepted: 2020-12-23
Published Online: 2021-07-07
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany