Accessible Requires Authentication Published by De Gruyter September 15, 2021

Novel Design and Comparison of Structural and Modal Analyses of Auxetic Geometry versus Honeycomb Geometry

U. Kemiklioğlu

Abstract

Auxetic structures are popular, since they have many applications in defense, textile and sport industries. The advantages of providing comfort and protection to people for the impact energy increase the usability of auxetic structures in these areas. Within the scope of this study, two structures were designed as honeycomb and auxtetic structures with lateral displacements in opposite directions. The auxetic and honeycomb structures were modeled in Ansys software by keeping the boundaries of these two structures close to each other. Structural and modal analysis were applied to these structures and the auxetic structure gave better results in terms of the tensile strength.


Uğur Kemiklioğlu, Doğuş University, Mechanical Engineering Department, Dudullu, 34775 Istanbul, Turkey


References

Auricchio, F., Bacigalupo, A., Gambaratto, L., Lepidi, M., Morganti, S. and Vadalà, F., "A Novel Layered Topology of Auxetic Materials Based on the Tetrachiral Honeycomb Microstructure", Mater. Des., 179, (2019), DOI:10.1016/j.matdes.2019.107883 Search in Google Scholar

Berinskii, I. E., "Elastic Networks to Model Auxetic Properties of Cellular Materials", Int. J. Mech. Sci., 115, 481–488 (2016), DOI:10.1016/j.ijmecsci.2016.07.038 Search in Google Scholar

Borcea, C., Streinu, I., "Auxetic Deformations and Elliptic Curves", Comput. Aided Geom. Des., 61, 9–19 (2018), DOI:10.1016/j.cagd.2018.02.003 Search in Google Scholar

Carneiro, V. H., Puga, H., "Axisymmetric Auxetics", Compos. Struct., 204, 438–444 (2018), 10.1016/j.compstruct.2018.07.116 Search in Google Scholar

Crespo, J.,Montáns, F. J., "A Continuum Approach for the Large Strain Finite Element Analysis of Auxetic Materials", Int. J. Mech. Sci., 135, 441–457 (2018), DOI:10.1016/j.ijmecsci.2017.11.038 Search in Google Scholar

Dhaba, A. R., Shaat, M., "Modeling Deformation of Auxetic and Non-Auxetic Polymer Gels", Appl. Math. Modell., 74, 320–336 (2019), DOI:10.1016/j.apm.2019.04.050 Search in Google Scholar

Dong, Z., Li, Y., Zhao ,T., Wu, W., Xiao, D. and Liang, J., "Experimental and Numerical Studies on the Compressive Mechanical Properties of the Metallic Auxetic Reentrant Honeycomb", Mater. Des., 182, (2019), DOI:10.1016/j.matdes.2019.108036 Search in Google Scholar

Evans, K. E., "Auxetic Polymers: A New Range of Materials", Endeavour, 15, 170–174 (1991), DOI:10.1016/0160-9327(91)90123-S Search in Google Scholar

Gao, J., Xue, H., Gao, L. and Luo, Z., "Topology Optimization for Auxetic Metamaterials Based on Isogeometric Analysis", Comput. Methods Appl. Mech. Eng., 352, 211–236 (2019), DOI:10.1016/j.cma.2019.04.021 Search in Google Scholar

Hajmohammad, M. H., Kolahchi, R., Zarei, M. S. and Nouri, A. H., "Dynamic Response of Auxetic Honeycomb Plates Integrated with Agglomerated CNT-Reinforced Face Sheets Subjected to Blast Load Based on Visco-Sinusoidal Theory", Int. J. Mech. Sci., 153, 391–401 (2019), DOI:10.1016/j.ijmecsci.2019.02.008 Search in Google Scholar

Han, S. C., Kang, D. S. and Kang, K., "Two Nature-Mimicking Auxetic Materials with Potential for High Energy Absorption", Mater. Today, 29, 30–39 (2019), DOI:10.1016/j.mattod.2018.11.004 Search in Google Scholar

Hou, J., Deng, B., Zhu, H., Lan, Y., Shi, Y., De, S., Liu, L., Chakraborty, P., Gao, F. And Peng, Q., "Magic Auxeticity Angle of Graphene", Carbon, 149, 350–354 (2019), DOI:10.1016/j.carbon.2019.04.057 Search in Google Scholar

Hou, S., Li, T., Jia, Z. and Wang, L., "Mechanical Properties of Sandwich Composites with 3D-Printed Auxetic and Non-Auxetic Lattice Cores under Low Velocity Impact", Mater. Des., 160, 1305–1321 (2018), DOI:10.1016/j.matdes.2018.11.002 Search in Google Scholar

Lakes, R., "Foam Structures with α Negative Poisson’s Ratio", Science, 235, 1038–1040 (1987), DOI:10.1126/science.235.4792.1038 Search in Google Scholar

Lan, X., Feng, S., Huang, Q. and Zhou, T., "A Comparative Study of Blast Resistance of Cylindrical Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores", Aerosp. Sci. Technol., 87, 37–47 (2019), DOI:10.1016/j.ast.2019.01.031 Search in Google Scholar

Li, X., Wang, Q., Yang, Z. and Lu, Z., "Novel Auxetic Structures with Enhanced Mechanical Properties", Extreme Mech. Lett., 27, 59–65 (2019), DOI:10.1016/j.eml.2019.01.002 Search in Google Scholar

Meena, K., Singamneni, S., "A New Auxetic Structure with Significantly Reduced Stress Concentration Effects", Mater. Des., 173(107779), (2019), DOI:10.1016/j.matdes.2019.107779 Search in Google Scholar

Sanami, M., Ravirala, N., Alderson, K. and Alderson, A., "Auxetic Materials for Sports Applications", Procedia Eng., 72, 453–458 (2014), DOI:10.1016/j.proeng.2014.06.079 Search in Google Scholar

Wu, W., Song, X., Liang, J., Xia, R., Qian, G. and Fang, D., "Mechanical Properties of Anti-Tetrachiral Auxetic Stents", Compos. Struct., 185, 381–392 (2018), 10.1016/j.compstruct.2017.11.048 Search in Google Scholar

Yang, H., Wang, M. and Ma, L., "Mechanical Properties of 3D Double-Φ Auxetic Structures", Int. J. Solids and Struct., 180, 13–29 (2019), DOI:10.1016/j.ijsolstr.2019.07.007 Search in Google Scholar

Yao, Y., Luo, Y., Xu, Y., Wang, B., Li, J., Deng, H. and Lu, H., "Fabrication and Characterization of Auxetic Shape Memory Composite Foams", Composites Part B, 152, 1–7 (2018), 10.1016/j.compositesb.2018.06.027 Search in Google Scholar

Received: 2020-11-23
Accepted: 2021-02-01
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany