Abstract
Auxetic structures are popular, since they have many applications in defense, textile and sport industries. The advantages of providing comfort and protection to people for the impact energy increase the usability of auxetic structures in these areas. Within the scope of this study, two structures were designed as honeycomb and auxtetic structures with lateral displacements in opposite directions. The auxetic and honeycomb structures were modeled in Ansys software by keeping the boundaries of these two structures close to each other. Structural and modal analysis were applied to these structures and the auxetic structure gave better results in terms of the tensile strength.
References
Auricchio, F., Bacigalupo, A., Gambaratto, L., Lepidi, M., Morganti, S. and Vadalà, F., "A Novel Layered Topology of Auxetic Materials Based on the Tetrachiral Honeycomb Microstructure", Mater. Des., 179, (2019), DOI:10.1016/j.matdes.2019.10788310.1016/j.matdes.2019.107883Search in Google Scholar
Berinskii, I. E., "Elastic Networks to Model Auxetic Properties of Cellular Materials", Int. J. Mech. Sci., 115, 481–488 (2016), DOI:10.1016/j.ijmecsci.2016.07.03810.1016/j.ijmecsci.2016.07.038Search in Google Scholar
Borcea, C., Streinu, I., "Auxetic Deformations and Elliptic Curves", Comput. Aided Geom. Des., 61, 9–19 (2018), DOI:10.1016/j.cagd.2018.02.00310.1016/j.cagd.2018.02.003Search in Google Scholar
Carneiro, V. H., Puga, H., "Axisymmetric Auxetics", Compos. Struct., 204, 438–444 (2018), 10.1016/j.compstruct.2018.07.116Search in Google Scholar
Crespo, J.,Montáns, F. J., "A Continuum Approach for the Large Strain Finite Element Analysis of Auxetic Materials", Int. J. Mech. Sci., 135, 441–457 (2018), DOI:10.1016/j.ijmecsci.2017.11.03810.1016/j.ijmecsci.2017.11.038Search in Google Scholar
Dhaba, A. R., Shaat, M., "Modeling Deformation of Auxetic and Non-Auxetic Polymer Gels", Appl. Math. Modell., 74, 320–336 (2019), DOI:10.1016/j.apm.2019.04.05010.1016/j.apm.2019.04.050Search in Google Scholar
Dong, Z., Li, Y., Zhao ,T., Wu, W., Xiao, D. and Liang, J., "Experimental and Numerical Studies on the Compressive Mechanical Properties of the Metallic Auxetic Reentrant Honeycomb", Mater. Des., 182, (2019), DOI:10.1016/j.matdes.2019.10803610.1016/j.matdes.2019.108036Search in Google Scholar
Evans, K. E., "Auxetic Polymers: A New Range of Materials", Endeavour, 15, 170–174 (1991), DOI:10.1016/0160-9327(91)90123-S10.1016/0160-9327(91)90123-SSearch in Google Scholar
Gao, J., Xue, H., Gao, L. and Luo, Z., "Topology Optimization for Auxetic Metamaterials Based on Isogeometric Analysis", Comput. Methods Appl. Mech. Eng., 352, 211–236 (2019), DOI:10.1016/j.cma.2019.04.02110.1016/j.cma.2019.04.021Search in Google Scholar
Hajmohammad, M. H., Kolahchi, R., Zarei, M. S. and Nouri, A. H., "Dynamic Response of Auxetic Honeycomb Plates Integrated with Agglomerated CNT-Reinforced Face Sheets Subjected to Blast Load Based on Visco-Sinusoidal Theory", Int. J. Mech. Sci., 153, 391–401 (2019), DOI:10.1016/j.ijmecsci.2019.02.00810.1016/j.ijmecsci.2019.02.008Search in Google Scholar
Han, S. C., Kang, D. S. and Kang, K., "Two Nature-Mimicking Auxetic Materials with Potential for High Energy Absorption", Mater. Today, 29, 30–39 (2019), DOI:10.1016/j.mattod.2018.11.00410.1016/j.mattod.2018.11.004Search in Google Scholar
Hou, J., Deng, B., Zhu, H., Lan, Y., Shi, Y., De, S., Liu, L., Chakraborty, P., Gao, F. And Peng, Q., "Magic Auxeticity Angle of Graphene", Carbon, 149, 350–354 (2019), DOI:10.1016/j.carbon.2019.04.05710.1016/j.carbon.2019.04.057Search in Google Scholar
Hou, S., Li, T., Jia, Z. and Wang, L., "Mechanical Properties of Sandwich Composites with 3D-Printed Auxetic and Non-Auxetic Lattice Cores under Low Velocity Impact", Mater. Des., 160, 1305–1321 (2018), DOI:10.1016/j.matdes.2018.11.00210.1016/j.matdes.2018.11.002Search in Google Scholar
Lakes, R., "Foam Structures with α Negative Poisson’s Ratio", Science, 235, 1038–1040 (1987), DOI:10.1126/science.235.4792.103810.1126/science.235.4792.1038Search in Google Scholar
Lan, X., Feng, S., Huang, Q. and Zhou, T., "A Comparative Study of Blast Resistance of Cylindrical Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores", Aerosp. Sci. Technol., 87, 37–47 (2019), DOI:10.1016/j.ast.2019.01.03110.1016/j.ast.2019.01.031Search in Google Scholar
Li, X., Wang, Q., Yang, Z. and Lu, Z., "Novel Auxetic Structures with Enhanced Mechanical Properties", Extreme Mech. Lett., 27, 59–65 (2019), DOI:10.1016/j.eml.2019.01.00210.1016/j.eml.2019.01.002Search in Google Scholar
Meena, K., Singamneni, S., "A New Auxetic Structure with Significantly Reduced Stress Concentration Effects", Mater. Des., 173(107779), (2019), DOI:10.1016/j.matdes.2019.10777910.1016/j.matdes.2019.107779Search in Google Scholar
Sanami, M., Ravirala, N., Alderson, K. and Alderson, A., "Auxetic Materials for Sports Applications", Procedia Eng., 72, 453–458 (2014), DOI:10.1016/j.proeng.2014.06.07910.1016/j.proeng.2014.06.079Search in Google Scholar
Wu, W., Song, X., Liang, J., Xia, R., Qian, G. and Fang, D., "Mechanical Properties of Anti-Tetrachiral Auxetic Stents", Compos. Struct., 185, 381–392 (2018), 10.1016/j.compstruct.2017.11.048Search in Google Scholar
Yang, H., Wang, M. and Ma, L., "Mechanical Properties of 3D Double-Φ Auxetic Structures", Int. J. Solids and Struct., 180, 13–29 (2019), DOI:10.1016/j.ijsolstr.2019.07.00710.1016/j.ijsolstr.2019.07.007Search in Google Scholar
Yao, Y., Luo, Y., Xu, Y., Wang, B., Li, J., Deng, H. and Lu, H., "Fabrication and Characterization of Auxetic Shape Memory Composite Foams", Composites Part B, 152, 1–7 (2018), 10.1016/j.compositesb.2018.06.027Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany