Accessible Unlicensed Requires Authentication Published by De Gruyter November 16, 2021

An Experimental Study on the Properties of Recycled High-Density Polyethylene

A. G. Toroslu

Abstract

Recycling of plastic materials has become more environmentally important than recycling of other materials. The most important problem during recycling is the presence of oil, dirt, dust and metal particles that are mixed with plastic materials. These mixtures can change their its mechanical and physical properties and it is quite costly to remove them completely. Removing iron alloy particles from plastic is possible by using the magnetic method. However, removing non-metallic materials requires extra processing. In this study, the use of recycled High-Density Polyethylene (rHDPE) without an expensive cleaning processes has been investigated. Different amounts of aluminium oxide (Al2O3) were added to High Density Polyethylene (HDPE) to simulate the effect of non-metallic material involved. The effect of these contamination rates on the mechanical and physical properties of HDPE was examined in detail. For this purpose, recyclable materials were produced by mixing rHDPE with 1%, to 7% Al2O3. The results show that up to 7% of the mixture has acceptable effects on the properties of HDPE. When the results of the experiments are examined, it is observed that there is a 3.74% change in the elastic modulus of the material. This means, that up to 7% non-metal contaminated rHDPE material can be used without any costly recycling process.


Ayşegül Gültekin Toroslu, Ministry of National Education, Emniyet Mahallesi Abant 2 Caddesi No: 8 Yenimahalle, Ankara, Turkey


References

Abedini, A., Asiyabi, T., Campbell, H. R., Hasanzadeh, R. and Azdast, T., “On Fabrication and Characteristics of Injection Molded ABS/ Al2O3 Nanocomposites", Int. J. Adv. Manuf. Technol., 102, 1747–1758 (2019), DOI:10.1007/s00170-019-03311-210.1007/s00170-019-03311-2Search in Google Scholar

Achilias, D. S., Roupakias, R., Megalokonomos, P., Lappas, A. A. and Antonakou, V. E., “Chemical Recycling of Plastic Wastes Made from Polyethylene (LDPE and HDPE) and Polypropylene (PP)", J. Hazard. Mater., 149, 536–542 (2017), 06.076, DOI:10.1016/j.jhazmat.200710.1016/j.jhazmat.2007Search in Google Scholar

Adhikary, K. B., Pang, S. and Staiger, M. P., “Dimensional Stability and Mechanical Behaviour of Wood–Plastic Composites Based on Recycled and Virgin High-Density Polyethylene (HDPE)", Composites Part B, 39, 807–815 (2008), DOI:10.1016/j.compositesb.2007.10.00510.1016/j.compositesb.2007.10.005Search in Google Scholar

Al-Salem, S. M., Lettieri, P. and Baeyens, J., “Recycling and Recovery Routes of Plastic Solid Waste (PSW): A Review", Waste Manage., 29, 2625–2643 (2009), DOI:10.1016/j.wasman.2009.06.00410.1016/j.wasman.2009.06.004Search in Google Scholar

Antonio, F. A., Marcos, V. D., “A Mechanical Analysis on Recycled PET/HDPE Composites", Polym. Degrad. Stab., 80, 373–382 (2003), DOI:10.1016/S0141-3910(03)00025-910.1016/S0141-3910(03)00025-9Search in Google Scholar

Arun, K. A., Murugesh, S. and Suman, M., “Plastic Solid Waste Utilization Technologies: A Review", IOP Conf. Series: Materials Science and Engineering 263, Tamil Nadu, India (2017), DOI:10.1088/1757-899X/263/2/02202410.1088/1757-899X/263/2/022024Search in Google Scholar

Atikler, U., Basalp, D. and Tihminlioğlu, F., “Mechanical and Morphological Properties of Recycled High-Density Polyethylene, Filled with Calcium Carbonate and Fly Ash", J. Appl. Polym. Sci., 102, 4460–4467 (2006), DOI:10.1002/app. 2477210.1002/app.24772Search in Google Scholar

Berlinda, O. O., Armando, G. M., “Evaluation of the Mechanical, Thermal and Rheological Properties of Recycled Polyolefins Rice-Hull Composites", Materials, 13, 667, (2015), DOI:10.33907 ma1303066710.33907ma13030667Search in Google Scholar

Cui, Y., Lee, S., Noruziaan, B., Cheung, M. and Tao, J., “Fabrication and Interfacial Modification of Wood/Recycled Plastic Composite Materials", Composites Part A, 39, 655–661 (2008), DOI:10.1016/j.compositesa.2007.10.01710.1016/j.compositesa.2007.10.017Search in Google Scholar

Deepak, K., Dangayach, G. S. and Rao, P. N., “An Experimental Investigation to Optimise Injection Moulding Process Parameters for Plastic Parts by Using Taguchi Method and Multi-Objective Genetic Algorithm", International Journal of Process Management and Benchmarking, 9, 1–26 (2019), DOI:10.1504/IJPMB.2019.09781810.1504/IJPMB.2019.097818Search in Google Scholar

Eriksen, M. K., Astrup, M. K., “Characterisation of Source-Separated, Rigid Plastic Waste and Evaluation of Recycling Initiatives: Effects of Product Design and Source-Separation System", Waste Manage., 87, 161–172 (2019), DOI:10.1016/j.wasman.2019.02.00610.1016/j.wasman.2019.02.006Search in Google Scholar

Farotti, E., Natalini, M., “Injection Molding Influence of Process Parameters on Mechanical Properties of Polypropylene Polymer. A First Study", AIAS 2017 International Conference on Stress Analysis, p. 256–264, Pisa, Italy (2017), DOI:10.1016/j.prostr.2017.12.02710.1016/j.prostr.2017.12.027Search in Google Scholar

Fernandez, A., Muniesa, M. and Javierre, C., “In-Line Rheological Testing of Thermoplastics and a Monitored Device for an Injection Moulding Machine: Application to Raw and Recycled Polypropylene", Polym. Test., 33, 107–115 (2014), DOI:10.1016/j.polymertesting.2013.11.00810.1016/j.polymertesting.2013.11.008Search in Google Scholar

Gibbs, M. L., “Look at Post-Consumer Recycled High Density Polyethylene", Proceedings of the ACS Division of Polymeric Materials Science and Engineering 63, p. 1034–1042, Washington, DC (1990)Search in Google Scholar

Hamad, K., Kaseem, M. and Deri, F., “Recycling of Waste from Polymer Materials: An Overview of the Recent Works", Polym. Degrad. Stab., 98, 2801–2812 (2013), DOI:10.1016/j.polymdegradstab.2013.09.02510.1016/j.polymdegradstab.2013.09.025Search in Google Scholar

Heidari, B. S., Hedayati, A., Davachi, S. M. and Kahamani, S., “Optimization of Process Parameters in Plastic Injection Molding for Minimizing the Volumetric Shrinkage and Warpage Using Radial Basis Function (rbf) Coupled with the K-Fold Cross Validation Technique", J. Polym. Eng., 39, 481–492, (2019), DOI:10.1515/polyeng-2018-035910.1515/polyeng-2018-0359Search in Google Scholar

Huiting, S., Pugh, R. J. and Forssberg, E., “A Review of Plastics Waste Recycling and the Flotation of Plastics", Resour. Conserv. Recycl., 25, 85–109, (1999), DOI:10.1016/S0921-3449(98)00017-210.1016/S0921-3449(98)00017-2Search in Google Scholar

Huiying, J., Joamin, G. G., Pavel, O. and Barbara, Z., “The Effect of Extensive Mechanical Recycling on the Properties of Low Density Polyethylene", Polym. Degrad. Stab., 97, 2262–2272 (2012), DOI:10.1016/j.polymdegradstab.2012.07.03910.1016/j.polymdegradstab.2012.07.039Search in Google Scholar

Keith, M. J., Rom_An-Ramírez, L. A., Leeke, G. and Ingram, A., “Recycling a Carbon Fibre Reinforced Polymer with a Supercritical Acetone/Water Solvent Mixture: Comprehensive Analysis of Reaction Kinetics", Polym. Degrad. Stab., 161, 225–234 (2019), DOI:10.1016/j.polymdegradstab.2019.01.01510.1016/j.polymdegradstab.2019.01.015Search in Google Scholar

Khalil, H. P. S. A., Shahnaz, S. B .S., Ratnam, M. M., Ahmad, F. and Fuaad, N. A. N., “Recycle Polypropylene (RPP) Wood Saw Dust (WSD) Composites-Part 1: The Effect of Different Filler Size and Filler Loading on Mechanical and Water Absorption Properties". J. Reinf. Plast. Compos., 25, 1291–1303, (2006), DOI:10.1177/073168440606206010.1177/0731684406062060Search in Google Scholar

Khedari, J., Nankongnab, N., Hirunlabh, J. and Teekasap, S., “New Low-Cost Insulation Particleboards from Mixture of Durian Peel and Coconut Coir", Build. Environ., 39, 59–65 (2004), DOI:10.1016/j.buildenv.2003.08.00110.1016/j.buildenv.2003.08.001Search in Google Scholar

Krupa, I., Novák, I. and Chodák, I., “Electrically and Thermally Conductive Polyethylene/Graphite Composites and their Mechanical Properties", Synth. Met., 145, 245–252 (2004), 007, DOI:10.1016/j.synthmet.2004.0510.1016/j.synthmet.2004.05Search in Google Scholar

Leining J., Bruemmer H.: Recycling Requirements and Design for Environmental Compliance, Fundamentals of Electronic Systems Design, Springer International Publishing, Switzerland, p. 193–218, (2017), DOI:10.1007/978-3-319-55840-010.1007/978-3-319-55840-0Search in Google Scholar

Leland, M., V., Rodriguez, F., “Chapter 11 Selected Aspects of Poly(ethylene terephthalate) Solution Behavior, Application to a Selective Dissolution Process for the Separation of Mixed Plastics", in Emerging Technologies in Plastics Recycling, Gerald D. A. (Ed.), ASC Publication, Washington, DC, p. 147–162 (1992), DOI:10.1021/bk-1992-0513.ch01110.1021/bk-1992-0513.ch011Search in Google Scholar

Loultcheva, M. K., Proietto, M., Jilovb, N. and La Mantis, F. P., “Recycling of High Density Polyethylene Containers", Polym. Degrad. Stab., 57, 77–81 (1997), DOI:10.1016/S0141-3910(96)00230-310.1016/S0141-3910(96)00230-3Search in Google Scholar

Lu, N., Oza, S., “A Comparative Study of the Mechanical Properties of Hemp Fiber with Virgin and Recycled High Density Polyethylene Matrix", Composites Part B, 45, 1651–1656 (2013), DOI:10.1016/j.compositesb.2012.09.07610.1016/j.compositesb.2012.09.076Search in Google Scholar

Marcelo, S. C., Joyce, B. A. and Josiane, D. V. B., “Effect of the Melt Flow Index of an HDPE Matrix on the Properties of Composites with Wood Particles", Polym. Test., 90, 106678 (2020),/j.polymertesting.2020.106678, DOI:10.101610.1016Search in Google Scholar

Maris, J., Bourdon, J., Brossard, J. M., Cauret L., Fontaine, L., Montembault, V., “Mechanical Recycling: Compatibilization of Mixed Thermoplastic Wastes", Polym. Degrad. Stab., 147, 245–266 (2018), DOI:10.1016/j.polymdegradstab.2017.11.00110.1016/j.polymdegradstab.2017.11.001Search in Google Scholar

Maspoch, M. L. L., Sampol, J., Ferrando, H. E., Rossa, A. and Sanchez-Soto, M., “An Experience on Materials Science Lab: the PET Case. Innovation by Life Cycle Management", LCM2005 International Conference. Volume 2, p. 305–309, Barcelona (2005)Search in Google Scholar

Meran, C., Ozturk, C. and Yuksel, M., “Examination of the Possibility of Recycling and Utilizing Recycled Polyethylene and Polypropylene, Technical Report", Mater. Des., 29, 701–705 (2008), DOI:10.1016/j.matdes.2007.02.00710.1016/j.matdes.2007.02.007Search in Google Scholar

Moayad, N. K., “Mechanical Properties of Filled High Density Polyethylene", Journal of Saudi Chemical Society, 19, 88–91 (2015), DOI:10.1016/j.jscs.2011.12.02410.1016/j.jscs.2011.12.024Search in Google Scholar

Montanes, N., Quiles-Carrillo, L., Ferrandiz, S., Fenollar, O. and Boronat, T., “Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding", J. Polym. Environ., 27, 747–756 (2019), DOI:10.1007/s10924-019-01388-010.1007/s10924-019-01388-0Search in Google Scholar

Oblak, P., Gonzalez-Gutierrez, J., Zupančič, B., Aulova, A. and Emri, I., “Processability and Mechanical Properties of Extensively Recycled High Density Polyethylene", Polym. Degrad. Stab., 114, 133–145 (2005), DOI:10.1016/j.polymdegradstab.2015.01.01210.1016/j.polymdegradstab.2015.01.012Search in Google Scholar

Ogorodnyk, O., Martinsen, K., “Monitoring and Control for Thermoplastics Injection Molding A Review", Procedia CIRP, 67, 380–385 (2018), DOI:10.1016/j.procir.2017.12.22910.1016/j.procir.2017.12.229Search in Google Scholar

Otoukeshb, M., Nerín, C., Aznar, M., Kabir, A., Furtonc, K. G. and Es’haghi, Z., “Determination of Adhesive Acrylates in Recycled Polyethylene Terephthalate by Fabric Phase Sorptive Extraction Coupled to Ultra Performance Liquid Chromatography-Mass Spectrometry", Journal of Chromatogr. A, 360264 (2019), PMid:31155144; DOI:10.1016/J.Chroma.2019.05.04410.1016/J.Chroma.2019.05.044Search in Google Scholar

Pattanakul, C., Selke, S., Lai, C. and Miltz, J., “Properties of Recycled High Density Polyethylene from Milk Bottles", J. Appl. Polym. Sci., 43, 2147–2150 (1991), DOI:10.1002/app. 1991.07043112210.1002/app.1991.070431122Search in Google Scholar

Ragaert, K., Delva, L. and Geemb, K. V., “Mechanical and Chemical Recycling of Solid Plastic Waste", Waste Manage., 69, 24–58 (2017), DOI:10.1016/j.wasman.2017.07.04410.1016/j.wasman.2017.07.044Search in Google Scholar

Satya, S. K., Sreekanth, P. S. R., “An Experimental Study on Recycled Polypropylene and High-Density Polyethylene and Evaluation of their Mechanical Properties", Mater. Today: Proc., 27, 920–924 (2020), DOI:10.1016/j.matpr.2020.01.25910.1016/j.matpr.2020.01.259Search in Google Scholar

Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L. and Fraternali, F., “Recycling of Plastic Solid Waste: A State of Art Review and Future Applications", Composites Part B, 115, 409–422 (2017), j.compositesb.2016.09.013, DOI:10.1016/10.1016/Search in Google Scholar

Sperber, R. J., Rosen, S. L., “Recycling of Thermoplastic Waste: Phase Equilibrium in Polystyrene-PVC-Polyolefin Solvent Systems", Polym. Eng. Sci., 16, 246–251 (1976), DOI:10.1002/pen.76016040510.1002/pen.760160405Search in Google Scholar

Troitsch, J.: International Plastics Flammability Handbook, Mechanical Recycling, Hanser Publishers, Munich (1990), DOI:10.1002/pola.1991.08029022210.1002/pola.1991.080290222Search in Google Scholar

Villalba, G., Segarra, M., Fernandez, A. I., Chimenos, J. M. and Espiell, F., “A Proposal for Quantifying the Recyclability of Materials", Resour. Conserv. Recycl., 37, 39–53 (2002), DOI:10.1016/S0921-3449(02)00056-310.1016/S0921-3449(02)00056-3Search in Google Scholar

Wunderlich, B.: Macromolecular Physics, 2nd Volume, Academic Press, New York (1976), DOI:10.1002/crat.1977012012110.1002/crat.19770120121Search in Google Scholar

Yang, T. H., Lin, C. J., Wang, S. Y. and Tsai, M. J., “Characteristics of Particleboard Made from Recycled Wood-Waste Chips Impregnated with Phenol Formaldehyde Resin", Build. Environ., 42, 189–95 (2007), DOI:10.1016/j.buildenv.2005.08.02810.1016/j.buildenv.2005.08.028Search in Google Scholar

Zahavich, A. T. P., Takacs, E., Latto, B. and Vlachopoulos, J., “Optimizing the Recycling of Polyolefins", ANTEC Proceedings 1186–1188 (1992)Search in Google Scholar

Záleská, M., Pavlíková, M., Pokorny, J., Jankovsky’ O., Pavlík, Z. and Cerny, R., “Structural, Mechanical and Hygrothermal Properties of Lightweight Concrete Based on the Application of Waste Plastics", Constr. Build. Mater., 180, 1–11 (2018), DOI:10.1016/j.conbuildmat.2018.05.25010.1016/j.conbuildmat.2018.05.250Search in Google Scholar

Zhao, Y., Lv, X. D. and Ni, H. G., “Solvent-Based Separation and Recycling of Waste Plastics: A Review", Chemosphere, 209, 707–720, (2018), DOI:10.1016/j.chemosphere.2018.06.09510.1016/j.chemosphere.2018.06.095Search in Google Scholar

Received: 2020-12-01
Accepted: 2021-05-20
Published Online: 2021-11-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany