Accessible Requires Authentication Published by De Gruyter July 7, 2021

In Situ Visualization for Control of Nano-Fibrillation Based on Spunbond Processing Using a Polypropylene/Polyethylene Terephthalate System

A. N. Md. Shahin, V. Shaayegan, P. C. Lee and C. B. Park

Abstract

In situ generation of polyethylene terephthalate (PET) nanofibrils in polypropylene (PP) microfibers via fiber spinning in a spunbond process was studied in this work. The effects of polymer flow rate and air speed in the drafter on the formation of PET fibrils were investigated using a pilot scale machine. An in-situ visualization technique was applied to examine the fiber evolution events and stretch profile at die exit. A scanning electron microscope was used to analyze and investigate the morphology of the dispersed domain. The PET dispersed phase was fibrillated within the PP matrix such that a nonofibrillated composite containing fibrils with an average size around 100 nm was obtained. It was found that the final fibril size directly depends on the degree of die swell, the air speed and the polymer flow rate. It was also found that the in situ observed size of the micro-scale PP/PET fibers was well correlated to the size of the nano-scale PET fibers formed in the PP matrix. The visualization results revealed that a smaller fibril diameter was obtainable by increasing the stretching on the spin line and/or decreasing the die swell.


Chul B. Park, Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto M5S 3G8, Canada

References

Bordereau, V., Carrega, M., Shi, Z. H., Utracki, L. A. and Sammut, P., “Development of Polymer Blend Morphology During Compounding in a Twin-Screw Extruder. Part III: Experimental Procedure and Preliminary Results”, Polym. Eng. Sci., 32, 1846–1856 (1992), DOI:1002/pen.760322407 Search in Google Scholar

Chen, C. H., White, J. L., Spruiell, J. E. and Goswami, B. C., “ Dynamics, Air Drag, and Orientation Development in the Spunbonding Process for Nonwoven Fabrics”, Text. Res. J., 53, 44–51 (1983), DOI:10.1177/004051758305300108 Search in Google Scholar

Choi, Y. B., Kim, S. Y., “ Effects of Interface on the Dynamic Mechanical Properties of PET/Nylon 6 Bicomponent Fibers”, J. Appl. Polym. Sci., 74, 2083–2093 (1999), DOI:10.1002/(SICI)1097-4628(19991121)74 : 8<2083::AID-APP25>3.0.CO;2-G Search in Google Scholar

Fakirov, S., Bhattacharyya, D., Lin, R. J. T., Fuchs, C. and Friedrich, K., “Contribution of Coalescence to Microfibril Formation in Polymer Blends during Cold Drawing”, J. Macromol. Sci. Part B: Phys., 46 B(1), 183–194 (2007), DOI:10.1080/00222340601044375 Search in Google Scholar

Fakirov, S., Evstatiev, M., “Microfibrillar Reinforced Composites– New Materials from Polymer Blends”, Adv. Mater., 6, 395–398 (1994), DOI:10.1002/adma.19940060513 Search in Google Scholar

Fedorova, N., Pourdeyhimi, B., “High Strength Nylon Micro- and Nanofiber Based Nonwovens via Spunbonding”, J. Appl. Polym. Sci., 104, 3434–3442 (2007), DOI:10.1002/app.25939 Search in Google Scholar

Geyer, R., Jambeck, J. R. and Law, K. L., “Production, Use, and Fate of all Plastics Ever Made”, Sci. Adv., 3, 25–29 (2017), DOI:10.1126/sciadv.1700782 Search in Google Scholar

Gupta, K., Chokshi, P. and Stepanyan, R., “Die-Swell Effect in Draw Resonance of Polymeric Spin-Line”, J. Non-Newtonian Fluid Mech., 230, 1–11 (2016);, DOI:10.1016/j.jnnfm.2016.02.002 Search in Google Scholar

Hassan, M. A., Yeom, B. Y., Wilkie, A., Pourdeyhimi, B. and Khan, S. A., “Fabrication of Nanofiber Meltblown Membranes and their Filtration Properties”, J. Membr. Sci., 427, 336–344 (2013), DOI:10.1016/j.memsci.2012.09.050 Search in Google Scholar

Jayanarayanan, K., Mishra, R. K., Joseph, K. and Thomas, S., “Chapter 8 Preparation, Morphology, Static and Dynamic Mechanical Properties, and Application of Polyolefins and Poly(ethylene terephthalate) Based Microfibrillar and Nanofibrillar Composites”, in Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends, Mishra, N., Thomas, R. K. and Kalarikkal, S., (Eds.), Elsevier, Duxford (2017), DOI:10.1016/B978-0-08-101991-7.00008-X Search in Google Scholar

Jayanarayanan, Karingamanna, Jose, T., Thomas, S. and Joseph, K., “Effect of Draw Ratio on the Microstructure, Thermal, Tensile and Dynamic Rheological Properties of Insitu Microfibrillar Composites”, Eur. Polym. J., 45, 1738–1747 (2009), DOI:10.1016/J.Eurpolymj.2009.02.024 Search in Google Scholar

Jiang, R., Liu, T., Xu, Z., Park, C. B. and Zhao, L., “Improving the Continuous Microcellular Extrusion Foaming Ability with Supercritical CO2 of Thermoplastic Polyether Ester Elastomer through In-Situ Fibrillation of Polytetrafluoroethylene”, Polymers, 11, 1–16 (2019), DOI:10.3390/polym11121983 Search in Google Scholar

Kakroodi, A. R., Kazemi, Y., Ding, W. D., Ameli, A. and Park, C. B., “Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability”, Biomacromolecules, 16, 3925–3935 (2015), DOI:10.1021/acs.biomac.5b01253 Search in Google Scholar

Li, Z. M., Yang, M. B., Lu, A., Feng, J. M. and Huang, R., “Tensile Properties of Poly(ethylene terephthalate) and Polyethylene In-Situ Microfiber Reinforced Composite Formed via Slit Die Extrusion and Hot-Stretching”, Mater. Lett., 56, 756–762 (2002), DOI:10.1016/S0167-577X(02)00609-2 Search in Google Scholar

Li, Z., Yang, M. and Xe, B., “In-Situ Microfiber Reinforced Composite Based on PET and PE via Slit Die Extrusion and Hot Stretching: Influences of Hot Stretching Ratio on Morphology”, Engineering, 4, 615–628 (2003), DOI:10.1002/pen.10050 Search in Google Scholar

Mccardle, R., Fakirov, S. and Bhattacharyya, D., “Nanofibrillar Polymer-Polymer Composites: Effect of Reinforcement Orientation on the Mechanical Properties”, Macromol. Symp., 327, 64–71 (2013), DOI:10.1002/masy.201350507 Search in Google Scholar

Padilla-Lopez, H., Vázquez, M. O., González-Núñez, R. and Rodrigue, D., “Influence of Post-Extrusion Parameters on the Final Morphology of Polystyrene/High Density Polyethylene Blends”, Polym. Eng. Sci., 43, 1646–1656 (2013), DOI:10.1002/pen.10138 Search in Google Scholar

Polychronopoulos, N. D., Papathanasiou, T. D., “A Study on the Effect of Drawing on Extrudate Swell in Film Casting”, Appl. Rheol., 25, 1–7 (2015), DOI:10.3933/APPLRHEOL-25-42425 Search in Google Scholar

Ramezani, A., Kazemi, Y., Nofar, M. and Park, C. B., “Tailoring Poly(lactic acid) for Packaging Applications via the Production of Fully Bio-Based in Situ Microfibrillar Composite Films”, Chem. Eng. J., 308, 772–782 (2017), DOI:10.1016/j.cej.2016.09.130 Search in Google Scholar

Rizvi, A., Andalib, Z. K. M. and Park, C. B., “Fiber-Spun Polypropylene/Polyethylene Terephthalate Micro Fi Brillar Composites with Enhanced Tensile and Rheological Properties and Foaming Ability”, Polymer, 110, 139–148 (2017), DOI:10.1016/j.polymer.2016.12.054 Search in Google Scholar

Rizvi, A., Chu, R. K. M., Lee, J. H. and Park, C. B., “Superhydrophobic and Oleophilic Open-Cell Foams from Fibrillar Blends of Polypropylene and Polytetrafluoroethylene”, ACS Appl. Mater. Interfaces, 6, 21131–21140 (2014), DOI:10.1021/am506006v Search in Google Scholar

Rizvi, A., Park, C. B., “Dispersed Polypropylene Fibrils Improve the Foaming Ability of a Polyethylene Matrix”, Polymer, 55(16), 4199–4205 (2014), DOI:10.1016/j.polymer.2014.06.014 Search in Google Scholar

Rizvi, A., Park, C. B. and Favis, B. D., “Tuning Viscoelastic and Crystallization Properties of Polypropylene Containing In-Situ Generated High Aspect Ratio Polyethylene Terephthalate Fibrils”, Polymer (United Kingdom), 68, 83–91 (2015), DOI:10.1016/j.polymer.2015.04.081 Search in Google Scholar

Rizvi, A., Tabatabaei, A., Barzegari, M. R., Mahmood, S. H. and Park, C. B., “In Situ Fibrillation of CO2-Philic Polymers: Sustainable Route to Polymer Foams in a Continuous Process”, Polymer, 54, 4645–4652 (2013), DOI:10.1016/j.polymer.2013.06.023 Search in Google Scholar

Rodriguez-Gonzalez, F. J., Virgilio, N., Ramsay, B. A. and Favis, B. D., “Influence of Melt Drawing on the Morphology of One- and Two-Step Processed LDPE/Thermoplastic Starch Blends”, Adv. Polym. Technol., 22, 297–305 (2003), DOI:10.1002/adv.10057 Search in Google Scholar

Samthong, C., Seemork, J., Nobukawa, S., Yamaguchi, M., Praserth-dam, P. and Somwangthanaroj, A., “Morphology, Structure, and Properties of Poly(lactic acid) Microporous Films Containing Poly(butylene terephthalate) Fine Fibers Fabricated by Biaxial Stretching”, J. Appl. Polym. Sci., 132, 1–8 (2015), DOI:10.1002/app.41415 Search in Google Scholar

Shi, Z. H., Utracki, L. A., “Development of Polymer Blend Morphology during Compounding in a Twin-Screw Extruder. Part II: Theoretical Derivations”, Polym. Eng. Sci., 32, 1834–1845 (1992), DOI:10.1002/pen.760322406 Search in Google Scholar

Shields, R. J., Bhattacharyya, D. and Fakirov, S., “Fibrillar Polymer-Polymer Composites: Morphology, Properties and Applications”, J. Mater. Sci., 43, 6758–6770 (2008), DOI:10.1007/s10853-008-2693-z Search in Google Scholar

The 5 Key Global Nonwovens Market Trends | News | Smithers Pira. (n.d.). Retrieved July 8, 2019, https://www.smitherspira.com/resources/2015/december/five-key-trends-in-the-future-of-global-nonwovens Search in Google Scholar

Tsakona, M., Rucevska, I., Baseline Report on Plastic Waste, 1–68 (2020), http://www.basel.int/Implementation/Plasticwaste/PlasticWastePartnership/Consultationsandmeetings/1stPWPmeeting/tabid/8305/Default.aspx Search in Google Scholar

Utracki, L. A., Shi, H., “During Compounding in a Twin-Screw Extruder. Part I: Droplet Dispersion and Coalescence-A Review”, Polym. Eng. Sci., 32, 1824–1833 (1992), DOI:10.1002/pen.760322405 Search in Google Scholar

Woodcock, S., Johnson, W. and Chen, Z., (2004). “Feature Article: Characterization of Polymer Blends by Atomic Force Microscopy: A Review”, Polym. News, 29, 176–183 (2004), DOI:10.1080/00323910490981056 Yao, J., Bastiaansen, C. and Peijs, T., “High Strength and High Modulus Electrospun Nanofibers”, Fibers, 2, 158–186 (2014), DOI:10.3390/fib2020158 Search in Google Scholar

Young, R. J., “Fundamental Principles of Polymeric Materials. 2nd Edition, Stephen L. Rosen. John Wiley & Sons, New York, 1993. pp. Xvi + 420, Price US$68.95. ISBN 0-471-57525-9”, Polymer Int., 33, 343–344 (1994), DOI:10.1002/pi.1994.210330324 Search in Google Scholar

Zhao, B., “Modeling Polypropylene Polymer Air Drawing in the Spunbonding Nonwoven Process”, Int. J. Clothing Sci. Technol., 26, 184–194 (2014);, DOI:10.1108/IJCST-10-2012-0068 Search in Google Scholar

Zhao, B., “Influence of Processing Parameters on Fibers Diameter and Web Evenness of Polypropylene Spunbonding Nonwoven Fabrics in Wide Slot Positive Pressure Drafting Assembly of Spunbonding Process”, Polym. Eng. Sci., 58, 1268–1277 (2018), DOI:10.1002/pen.24690 Search in Google Scholar

Zhao, C., Mark, L. H., Alshrah, M., Soltani, I., Lee, P. C. and Park, C. B., “Challenge in Manufacturing Nanofibril Composites with Low Matrix Viscosity: Effects of Matrix Viscosity and Fibril Content”, Eur. Polym. J., 121, 109310 (2019), DOI:10.1016/j.eurpolymj.2019.109310 Search in Google Scholar

Zhao, J., Zhao, Q., Wang, L., Wang, C., Guo, B., Park, C. B. and Wang, G., “Development of High Thermal Insulation and Compressive Strength BPP Foams Using Mold-Opening Foam Injection Molding with In-Situ Fibrillated PTFE Fibers”, Eur. Polym. J., 98, 1–10 (2018), DOI:10.1016/j.eurpolymj.2017.11.001 Search in Google Scholar

Zuo, F., Tan, D. H., Wang, Z., Jeung, S., Macosko, C. W. and Bates, F. S., “Nanofibers from Melt Blown Fiber-In-Fiber Polymer Blends”, ACS Macro Lett., 2, 301–305 (2013), DOI:10.1021/mz400053n Search in Google Scholar

Appendix
Fig. S1 Schematic diagram (A) of the visualization setup and (B) the detailed die design

Fig. S1

Schematic diagram (A) of the visualization setup and (B) the detailed die design

Fig. S2 Number of pictures captured by the camera for spunbond processing at the die exit at different air drafter speeds: (A) air speed 3.25 m/s, (B) air speed 10.70 m/s, (C) air speed 18.82 m/s at different polymer flow rates. All the scale bars show 1 mm

Fig. S2

Number of pictures captured by the camera for spunbond processing at the die exit at different air drafter speeds: (A) air speed 3.25 m/s, (B) air speed 10.70 m/s, (C) air speed 18.82 m/s at different polymer flow rates. All the scale bars show 1 mm

Fig. S3 SEM images of PP/PET (95/5 wt%) microfibrils obtained at various air speeds and polymer flow rates

Fig. S3

SEM images of PP/PET (95/5 wt%) microfibrils obtained at various air speeds and polymer flow rates

Fig. S4 SEM micrographs of (A) PET nanofibrils extracted from drawn PP/PET (95/5 wt%) fibers, and (B) PET nanofibrils extracted from drawn PP/PET (90/10 wt%) fibers. Nanofibril size distributions obtained from (C) PP/PET (95/5 wt%) and (D) PP/PET (90/10 wt%) fibers. The PP/PET fibers were drawn at an average va = 18.82 m/s with Q = 3.22 g/min

Fig. S4

SEM micrographs of (A) PET nanofibrils extracted from drawn PP/PET (95/5 wt%) fibers, and (B) PET nanofibrils extracted from drawn PP/PET (90/10 wt%) fibers. Nanofibril size distributions obtained from (C) PP/PET (95/5 wt%) and (D) PP/PET (90/10 wt%) fibers. The PP/PET fibers were drawn at an average va = 18.82 m/s with Q = 3.22 g/min

Table S1

The maximum diameters of PP/PET (95/5 wt%) fibers measured at various processing conditions. The die swell ratio can be calculated by dividing the maximum diameter by the fixed die diameter of 400 lm

Average air velocity in the drafterPolymer flow rate
3.22 g/min14.26 g/min17.69 g/min
3.27 m/s559.0 μm550.0 μm594.5 μm
10.70 m/s557.7 μm544.5 μm577.9 μm
18.82 m/s489.5 μm505.6 μm538.9 μm
Received: 2020-12-04
Accepted: 2021-04-16
Published Online: 2021-07-07
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany