Abstract
Injection compression molding (ICM) is a hybrid injection molding process for manufacturing polymer products with high precision and surface accuracy. In this study, a 3D flow simulation was employed for ICM and injection molding (IM) processes. Initially, the process parameters of IM and ICM were discussed based on the numerical simulations. The IM and ICM processes were compared via numerical simulation by using CAE tools of Moldflow software. The effect of process parameters of mold surface temperature, melting temperature, compression force and injection time on clamping force and pressure at the injection location of molded 3D BJ998MO Polypropylene (MFI 100) part was investigated by Taguchi analysis. In conclusion, it was found that the ICM has a relatively lower filling pressure than ICM, which results in reduced clamping force for producing a 3D thin-walled polymeric part.
Acknowledgements
This research is supported by the Autodesk/Moldflow software.
References
Borealis Europe: Polypropylene BJ998MO, Product Data Sheet 27.07.2017 Ed.2, retrieved August 02, 2020 from https://www.borealisgroup.com/storage/Datasheets/bj998 mo/BJ998MO-PDS-RE-G_EUROPE-EN-V2-PDS-EUR-43147–10046362.pdfSearch in Google Scholar
Chen, S. C., Chen, Y. C. and Cheng, N. T., "Simulation of Injection-Compression Mold-Filling Process", Int. Commun. Heat Mass Transfer, 25, 907–917 (1998), DOI:10.1016/S0735-1933(98)00082-710.1016/S0735-1933(98)00082-7Search in Google Scholar
Fan, B., Kazmer, D. O., "Simulation of Injection-Compression Molding for Optical Media", Polym. Eng. Sci., 43, 596–606 (2003), DOI:10.1002/pen.1004810.1002/pen.10048Search in Google Scholar
Guan, W. S., Huang, H. X., "Back Melt Flow in Injection–Compression Molding: Effect on Part Thickness Distribution", Int. Commun. Heat Mass Transfer, 39, 792–797 (2012), DOI:10.1016/j.icheatmasstransfer.2012.04.01210.1016/j.icheatmasstransfer.2012.04.012Search in Google Scholar
Han, S., Jin, X., "The Three Dimensional Numerical Analysis of Injection Compression Molding Process", SPE ANTEC Tech. Papers, 1764–1769 (2011)Search in Google Scholar
Han, S. R., Cho, J. R., Beak, S. K., Hong, J. A. and Lee, Y. S., "Numerical and Experimental Studies of Injection Compression Molding Process for Thick Plastic Gas Valve Stem", Int. J. Adv. Manuf. Technol., 89, 651–660 (2017), DOI:10.1007/s00170-016-9139-610.1007/s00170-016-9139-6Search in Google Scholar
Hong, S., Jeongho, H., Kang, J. and Yoon, K., "Comparison of Injection Molding and Injection/Compression Molding for the Replication of Microstructure", Korea-Australia Rheology Journal, 27, 309–317 (2015), DOI:10.1007/s13367-015-0030-z10.1007/s13367-015-0030-zSearch in Google Scholar
Hu, S. T., Chiu, H. S., Chien, C. C., Yu, C. K. and Chang, R. Y., "True 3D Numerical Simulation in Injection Compression Molding (ICM)", SPE ANTEC Tech. Papers, 1340–1344 (2010)Search in Google Scholar
Kwon, Y. Il., Song, Y. S., "Simulation of injection-compression molding for thin and large battery housing", Curr. Appl. Phys., 18, 1451–1457 (2018), DOI:10.1016/j.cap.2018.08.01710.1016/j.cap.2018.08.017Search in Google Scholar
Kwon, Y. Il., Song, Y. S., "Application of Injection-Compression Molding to Thin-Walled Polymeric Parts", Korea-Australia Rheology Journal, 30, 161–167 (2018), DOI:10.1007/s13367-018-0016-°10.1007/s13367-018-0016-°Search in Google Scholar
Lee, S. H., Kim, S. Y., Youn, J. R. and Kim, B. J., "Warpage of a Large-Sized Orthogonal Stiffened Plate Produced by Injection Molding and Injection Compression Molding", J. Appl. Polym. Sci., 116, 3460–3467 (2010), DOI 10.1002/app.31873, DOI:10.1002/app.3187310.1002/app.31873Search in Google Scholar
Li, Y., Zhang, Y. and Li, D., "Shrinkage Analysis of Injection-Compression Molding for Transparent Plastic Panel by 3D Simulation", Applied Mechanics and Materials, 44–47, 1029–1033 (2011), 10.4028/www.scientific.net/AMM.44-47.1029Search in Google Scholar
Oh, H. J., Song, Y. S., "Enhanced Impact Strength of Injection-Compression Molded Parts by Controlling Residual Stress Distribution", Korea-Australia Rheology Journal, 31, 35–39 (2019), DOI:10.1007/s13367-019-0004-710.1007/s13367-019-0004-7Search in Google Scholar
Sortino, M., Totis, G. and Kuljanic, E., "Comparison of Injection Molding Technologies for the Production of Micro Optical Devices", Procedia Engineering, 69, 1296–1305 (2014), DOI:10.1016/j.proeng.2014.03.12210.1016/j.proeng.2014.03.122Search in Google Scholar
Werf, van der, J. J., Boshouwers, A. H. M., "INJECT-3 A Simulation Code for the Filling Stage of the Injection Molding Process of Thermoplastics", PhD Thesis, Technische Universiteit Eindhoven Eindhoven (1988), DOI:10.6100/IR28854210.6100/IR288542Search in Google Scholar
Wu, C. H., Su, Y. L., "Optimization of Wedge-Shaped Parts for Injection Molding and Injection Compression Molding", Int. Commun. Heat Mass Transfer, 30, 215–224 (2003), DOI:10.1016/S0735-1933(03)00032-010.1016/S0735-1933(03)00032-0Search in Google Scholar
Young, W. B., "Effect of Process Parameters on Injection Compression Molding of Pickup Lens", Appl. Math. Modell., 29, 955–971 (2005), DOI:10.1016/j.apm.2005.02.00410.1016/j.apm.2005.02.004Search in Google Scholar
Zhang, Y., Yu, W., Liang, J., Lang, J. and Li, D., "Three-Dimensional Numerical Simulation for Plastic Injection-Compression Molding", Front. Mech. Eng., 13, 74–84 (2018), DOI:10.1007/s11465-018-0490-110.1007/s11465-018-0490-1Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany