Accessible Requires Authentication Published by De Gruyter September 15, 2021

Numerical Simulation and Process Optimization of a 3D Thin-Walled Polymeric Part Using Injection Compression Molding

D. Sönmez and A. A. Eker

Abstract

Injection compression molding (ICM) is a hybrid injection molding process for manufacturing polymer products with high precision and surface accuracy. In this study, a 3D flow simulation was employed for ICM and injection molding (IM) processes. Initially, the process parameters of IM and ICM were discussed based on the numerical simulations. The IM and ICM processes were compared via numerical simulation by using CAE tools of Moldflow software. The effect of process parameters of mold surface temperature, melting temperature, compression force and injection time on clamping force and pressure at the injection location of molded 3D BJ998MO Polypropylene (MFI 100) part was investigated by Taguchi analysis. In conclusion, it was found that the ICM has a relatively lower filling pressure than ICM, which results in reduced clamping force for producing a 3D thin-walled polymeric part.


Deniz Sönmez, Mercedes Benz Türk A.Ş , Orhan Gazi Mahallesi, Mercedes Bulvari 34519 No:17/1 Esenyurt, Istanbul, Turkey


Acknowledgements

This research is supported by the Autodesk/Moldflow software.

References

Borealis Europe: Polypropylene BJ998MO, Product Data Sheet 27.07.2017 Ed.2, retrieved August 02, 2020 from https://www.borealisgroup.com/storage/Datasheets/bj998 mo/BJ998MO-PDS-RE-G_EUROPE-EN-V2-PDS-EUR-43147–10046362.pdf Search in Google Scholar

Chen, S. C., Chen, Y. C. and Cheng, N. T., "Simulation of Injection-Compression Mold-Filling Process", Int. Commun. Heat Mass Transfer, 25, 907–917 (1998), DOI:10.1016/S0735-1933(98)00082-7 Search in Google Scholar

Fan, B., Kazmer, D. O., "Simulation of Injection-Compression Molding for Optical Media", Polym. Eng. Sci., 43, 596–606 (2003), DOI:10.1002/pen.10048 Search in Google Scholar

Guan, W. S., Huang, H. X., "Back Melt Flow in Injection–Compression Molding: Effect on Part Thickness Distribution", Int. Commun. Heat Mass Transfer, 39, 792–797 (2012), DOI:10.1016/j.icheatmasstransfer.2012.04.012 Search in Google Scholar

Han, S., Jin, X., "The Three Dimensional Numerical Analysis of Injection Compression Molding Process", SPE ANTEC Tech. Papers, 1764–1769 (2011) Search in Google Scholar

Han, S. R., Cho, J. R., Beak, S. K., Hong, J. A. and Lee, Y. S., "Numerical and Experimental Studies of Injection Compression Molding Process for Thick Plastic Gas Valve Stem", Int. J. Adv. Manuf. Technol., 89, 651–660 (2017), DOI:10.1007/s00170-016-9139-6 Search in Google Scholar

Hong, S., Jeongho, H., Kang, J. and Yoon, K., "Comparison of Injection Molding and Injection/Compression Molding for the Replication of Microstructure", Korea-Australia Rheology Journal, 27, 309–317 (2015), DOI:10.1007/s13367-015-0030-z Search in Google Scholar

Hu, S. T., Chiu, H. S., Chien, C. C., Yu, C. K. and Chang, R. Y., "True 3D Numerical Simulation in Injection Compression Molding (ICM)", SPE ANTEC Tech. Papers, 1340–1344 (2010) Search in Google Scholar

Kwon, Y. Il., Song, Y. S., "Simulation of injection-compression molding for thin and large battery housing", Curr. Appl. Phys., 18, 1451–1457 (2018), DOI:10.1016/j.cap.2018.08.017 Search in Google Scholar

Kwon, Y. Il., Song, Y. S., "Application of Injection-Compression Molding to Thin-Walled Polymeric Parts", Korea-Australia Rheology Journal, 30, 161–167 (2018), DOI:10.1007/s13367-018-0016-° Search in Google Scholar

Lee, S. H., Kim, S. Y., Youn, J. R. and Kim, B. J., "Warpage of a Large-Sized Orthogonal Stiffened Plate Produced by Injection Molding and Injection Compression Molding", J. Appl. Polym. Sci., 116, 3460–3467 (2010), DOI 10.1002/app.31873, DOI:10.1002/app.31873 Search in Google Scholar

Li, Y., Zhang, Y. and Li, D., "Shrinkage Analysis of Injection-Compression Molding for Transparent Plastic Panel by 3D Simulation", Applied Mechanics and Materials, 44–47, 1029–1033 (2011), 10.4028/www.scientific.net/AMM.44-47.1029 Search in Google Scholar

Oh, H. J., Song, Y. S., "Enhanced Impact Strength of Injection-Compression Molded Parts by Controlling Residual Stress Distribution", Korea-Australia Rheology Journal, 31, 35–39 (2019), DOI:10.1007/s13367-019-0004-7 Search in Google Scholar

Sortino, M., Totis, G. and Kuljanic, E., "Comparison of Injection Molding Technologies for the Production of Micro Optical Devices", Procedia Engineering, 69, 1296–1305 (2014), DOI:10.1016/j.proeng.2014.03.122 Search in Google Scholar

Werf, van der, J. J., Boshouwers, A. H. M., "INJECT-3 A Simulation Code for the Filling Stage of the Injection Molding Process of Thermoplastics", PhD Thesis, Technische Universiteit Eindhoven Eindhoven (1988), DOI:10.6100/IR288542 Search in Google Scholar

Wu, C. H., Su, Y. L., "Optimization of Wedge-Shaped Parts for Injection Molding and Injection Compression Molding", Int. Commun. Heat Mass Transfer, 30, 215–224 (2003), DOI:10.1016/S0735-1933(03)00032-0 Search in Google Scholar

Young, W. B., "Effect of Process Parameters on Injection Compression Molding of Pickup Lens", Appl. Math. Modell., 29, 955–971 (2005), DOI:10.1016/j.apm.2005.02.004 Search in Google Scholar

Zhang, Y., Yu, W., Liang, J., Lang, J. and Li, D., "Three-Dimensional Numerical Simulation for Plastic Injection-Compression Molding", Front. Mech. Eng., 13, 74–84 (2018), DOI:10.1007/s11465-018-0490-1 Search in Google Scholar

Received: 2020-12-08
Accepted: 2021-03-14
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany