Accessible Requires Authentication Published by De Gruyter July 7, 2021

Composites of Cysteamine Functionalised Graphene Oxide and Polypropylene

S. S. Abbas and T. McNally

Abstract

Cysteamine functionalised reduced graphene oxide (rGO) was grafted to polypropylene-graft-maleic anhydride (PP-g-MA) and subsequently melt blended with PP. The covalent bridging of rGO to PP-g-MA via the cysteamine molecule and co-crystallization are routes to promoting interfacial interactions between rGO and the PP matrix. A rheological percolation threshold was achieved for a nanofiller loading between 3 wt% and 5 wt%, but none detected for the composites prepared with un-functionalized rGO. At low loadings (0.1 wt%), functionalized rGO is well dispersed in the PP matrix, an interconnecting filler-filler, polymer-filler and polymer-polymer network is formed, resulting in increased tensile toughness (1 500%) and elongation at break (40%) relative to neat PP. Irrespective of whether the rGO was functionalised or not, it had a significant effect on the crystallization behavior of PP, inducing heterogeneous nucleation, increasing the crystallisation temperature (Tm) of PP by up to 10°C and decreasing the crystalline content (Xc) by ∼30% for the highest (5 wt%) filler loading. The growth of the monoclinic a-phase of PP is preferred on addition of functionalised rGO and b crystal growth suppressed.


Tony McNally, International Institute for Nanocomposite Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, UK


Acknowledgements

SA thanks EPSRC and Jaguar Land Rover for funding an iCASE PhD studentship.

References

Abbas, S. S., Kelly, N. L., Patias, G., Hanna J. and McNally, T., “Cysteamine Functionalised Reduced Graphene Oxide Modification of Maleated Poly(propylene)", Polymer, 203, 122750 (2020a), DOI:10.1016/j.polymer.2020.122750 Search in Google Scholar

Abbas, S. S., Rees, G. J., Patias, G., Dancer, C. E. J., Hanna, J. and McNally, T., “In Situ Cross-Linking of Silane Functionalized Reduced Graphene Oxide and Low-Density Polyethylene", ACS Appl. Polym. Mater., 2, 1897–1908 (2020b), DOI:10.1021/acsapm.0c00115 Search in Google Scholar

Ardanuy, M., Velasco, J. J., Antunes, M., Rodriguez-Perez, M. and de Saja, J. A., “Structure and Properties of Polypropylene/Hydrotalcite Nanocomposites", Polym. Compos., 31, 870–878 (2010), DOI:10.1002/pc.20869 Search in Google Scholar

Bai, J.-J., Hu, Zhang, G.-S., Liu, J.-T., Cui, B.-X., Hou, J.-J., Yu, X.-R. and Li, Z.-Z., “Preparation and Rheology of Isocyanate Functionalized Graphene Oxide/Thermoplastic Polyurethane Elastomer Nanocomposites", J. Macromol. Sci., Part B Phys., 58, 425–441 (2019), DOI:10.1080/00222348.2019.1565102 Search in Google Scholar

Benmesli, S., Riahi, F., “Dynamic Mechanical and Thermal Properties of a Chemically Modified Polypropylene/Natural Rubber Thermoplastic Elastomer Blend", Polym. Test., 36, 54–61 (2014), DOI:10.1016/j.polymertesting.2014.03.016 Search in Google Scholar

Castillo, J., Lozano-Garcia, T., Morales-Zamudio, R., López-Barroso, L., Lafleur, J., Karami, P. G., Sanchez-Valdes, S., Martinez-Colunga, S., Rodriguez, G., Perez-Berumen, F., Flores, C. and García, A., “Influence of Graphene-Based Compounds on the Mechanical Toughness and Thermal Stability of Polypropylene", J. Appl. Polym. Sci., 137, 48258 (2020), DOI:10.1002/app.48258 Search in Google Scholar

Chin, S. J., Vempati, S. D., Dawson, P., Knite, M., Linarts, A., Ozols, K. and McNally, T., “Electrical Conduction and Rheological Behavior of Composites of Poly(e-caprolactone) and MWCNTs", Polymer, 58, 209–221 (2015), DOI:10.1016/j.polymer.2014.12.034 Search in Google Scholar

Chiu, Y.-C., Huang, C.-L. and Wang, C.,\Rheological and Conductivity Percolations of Syndiotactic Polystyrene Composites Filled with Graphene Nanosheets and Carbon Nanotubes: A Comparative Study", Compos. Sci. Technol., 134, 153–160 (2016), DOI:10.1016/j.compscitech.2016.08.016 Search in Google Scholar

De Rosa, C., Scoti, M., Di Girolamo, R., de Ballesteros, O. R., Auriemma, F. and Malafronte, A., “Polymorphism in Polymers: A Tool to Tailor Material’s Properties", Polym. Cryst., 3, e10101 (2020), DOI:10.1002/pcr2.10101 Search in Google Scholar

Dechant, J.: Polymer Handbook. 3rd Edition, John Wiley & Sons, New York (1990) Search in Google Scholar

Foster, C. W., Down, P. M., Zhang, Y., Ji, X.-B., Rowley-Neale, S. J., Smith, G. C., Kelly, J. P. and Banks, C. E., “3D Printed Graphene Based Energy Storage Devices\, Sci. Rep., 7, 42233 (2017), DOI:10.1038/srep42233 Search in Google Scholar

Gupta, J., Wan, C., Haddleton, D. M., and McNally, T.,\Plasticisation and Compatibilisation of Poly(propylene) with Poly(lauryl acrylate) Surface Modified MWCNTs", Polymer, 133, 89–101 (2017), DOI:10.1016/j.polymer.2017.11.025 Search in Google Scholar

Harper, D. P., Laborie, M.-P. G. and Wolcott, M. P., “The Impact of Polypropylene-Graft-Maleic Anhydride on the Crystallization and Dynamic Mechanical Properties of Isotactic Polypropylene", J. Appl. Polym. Sci., 111, 753–758 (2009), DOI:10.1002/app.29100 Search in Google Scholar

Hsiao, M.-C., Liao, S.-H., Lin, Y.-F., Wang, C.-A., Pu, N.-W., Tsai, H.-M. and Ma, C.-C. M., “Preparation and Characterization of Polypropylene-Graft-Thermally Reduced Graphite Oxide with an Improved Compatibility with Polypropylene-Based Nanocomposite", Nanoscale, 3, 1516–1522 (2011), DOI:10.1039/c0nr00981d Search in Google Scholar

Huo, H., Jiang, S., An, L. and Feng, J., “Influence of Shear on Crystallization Behavior of the b Phase in Isotactic Polypropylene with b-Nucleating Agent", Macromolecules, 37, 2478–2483 (2004), DOI:10.1021/ma0358531 Search in Google Scholar

Juhász, P., Varga, J., Belina, K. and Belina, G., “Efficiency of b-Nucleating Agents in Propylene/a-Olefin Copolymers", J. Macromol. Science, Part B Phys., 41, 1173–1189 (2002), DOI:10.1081/MB-120013090 Search in Google Scholar

Kalantari, B., Mojtahedi, M. R. M., Sharif, F. and Rahbar, R. S., “Effect of Graphene Nanoplatelets Presence on the Morphology, Structure, and Thermal Properties of Polypropylene in Fiber Melt-Spinning Process", Polym. Compos., 36, 367–375 (2015a), DOI:10.1002/pc.22951 Search in Google Scholar

Kalantari, B., Mojtahedi, M. R. M., Sharif, F. and Rahbar, R. S., “Flow-Induced Crystallization of Polypropylene in the Presence of Graphene Nanoplatelets and Relevant Mechanical Properties in Nanocompsoite Fibres", Composites Part A, 76, 203–214 (2015b), DOI:10.1016/j.compositesa.2015.05.028 Search in Google Scholar

Khare, R. A., Bhattacharyya, A. R. and Kulkarni, A. R.,\Melt-Mixed Polypropylene/Acrylonitrile-Butadiene-Styrene Blends with Multiwall Carbon Nanotubes: Effect of Compatibilizer and Modifier on Morphology and Electrical Conductivity", J. Appl. Polym. Sci., 120, 2663–2672 (2011), DOI:10.1002/app.33371 Search in Google Scholar

Kotsilkova, R., Ivanov, E., Krusteva, E., Silvestre, C., Cimmino S. and Duraccio, D., “Isotactic Polypropylene Composites Reinforced with Multiwall Carbon Nanotubes, Part 2: Thermal and Mechanical Properties Related to the Structure", J. Appl. Polym. Sci., 115, 3576–3585 (2010), DOI:10.1002/app.30413 Search in Google Scholar

Lertwimolnun, W., Vergnes, B.,\Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix", Polymer, 46, 3462–3471 (2005), DOI:10.1016/j.polymer.2005.02.018 Search in Google Scholar

Létoffé, A., García-Rodríguez, S., Hoppe, S., Canilho, N., Godard, O., Pasc, A., Royaud, I. and Ponçot, M., “Switching from Brittle to Ductile Isotactic Polypropylene-g-Maleic Anhydride by Crosslinking with Capped-End Polyether Diamine", Polymer, 164, 67–78 (2019), DOI:10.1016/j.polymer.2019.01.015 Search in Google Scholar

Li, C.-Q., Zha, J.-W., Long, H.-Q., Wang, S.-J., Zhang, D.-L. and Dang, Z.-M., “Mechanical and Dielectric Properties of Graphene Incorporated Polypropylene Nanocomposites Using Polypropylene-Graft-Maleic Anhydride as a Compatibilizer", Compos. Sci. Technol., 153, 111–118 (2017), DOI:10.1016/j.compscitech.2017.10.015 Search in Google Scholar

Liu, Z., Zheng, G., Dai, K., Liu, C. and Shen, C., “Simultaneously Improving Tensile Strength and Toughness of Melt-Spun b-Nucleated Isotactic Polypropylene Fibers", J. Appl. Polym. Sci., 133, (2016), DOI:10.1002/app.43454 Search in Google Scholar

Lv, C., Xue, Q., Xia, D., Ma, M., Xie, J. and Chen, H., “Effect of Chemisorption on the Interfacial Bonding Characteristics of Graphene– Polymer Composites", J. Phys. Chem. C, 114, 6588–6594 (2010), DOI:10.1021/jp100110n Search in Google Scholar

Martínez-Colunga, J. G., Sanchez-Valdes, S., Ramos-deValle, L. F., Perez-Camacho, O., Ramirez-Vargas, E., Benavides-Cantú, R., Avila-Orta, C. A., Cruz-Delgado, V. J., Mata-Padilla, J. M., Lozano-Ramírez, T. and Espinoza-Martínez, A. B., “Aniline-Modified Polypropylene as a Compatibilizer in Polypropylene Carbon Nanotube Composites", Polym. Plast. Technol. Eng., 57, 1360–1366 (2018), DOI:10.1080/03602559.2017.1381251 Search in Google Scholar

McClory, C., McNally, T., Baxendale, M., Pötschke, P., Blau, W. and Ruether, M., “Electrical and Rheological Percolation of PMMA/MWCNT Nanocomposites as a Function of CNT Geometry and Functionality", Eur. Polym. J., 46, 854–868 (2010), DOI:10.1016/j.eurpolymj.2010.02.009 Search in Google Scholar

Menyhárd, A., Faludi, G. and Varga, J., “b-Crystallisation Tendency and Structure of Polypropylene Grafted by Maleic Anhydride and its Blends with Isotactic Polypropylene", J. Therm. Anal. Calorim., 93, 937–945 (2008), DOI:10.1007/s10973-007-8569-7 Search in Google Scholar

Mun, S. C., Kim, M., Prakashan, K., Jung, H. J., Son, Y. and Park, O. O., “A New Approach to Determine Rheological Percolation of Carbon Nanotubes in Microstructured Polymer Matrices", Carbon, 67, 64–71 (2014), DOI:10.1016/j.carbon.2013.09.056 Search in Google Scholar

Murthy, N. S., “Chapter 2 X-Ray Diffraction from Polymers", in Polymer Morphology, Guo, Q. (Ed.),Wiley, New Jersey, p. 14–36 (2016), DOI:10.1002/9781118892756.ch2 Search in Google Scholar

Nobile, M. R., “Chapter 15 Rheology of Polymer–Carbon Nanotube Composites Melts", in Polymer–Carbon Nanotube Composites, McNally, T., Pötschke, P. (Eds.), Woodhead Publishing, Oxford, p. 428–481 (2011), DOI:10.1533/9780857091390.2.428 Search in Google Scholar

Parija, S., Bhattacharyya, A. R., “Role of Interfacial Interactions to Control the Extent of Wrapping of Polymer Chains on Multi-Walled Carbon Nanotubes", RSC Advances, 6, 42334–42346 (2016), DOI:10.1039/C6RA06258J Search in Google Scholar

Potts, J. R., Dreyer, D. R., Bielawski, C. W. and Ruoff. R. S.,“Graphene-Based Polymer Nanocomposites", Polymer, 52, 5–25 (2011), DOI:10.1016/j.polymer.2010.11.042 Search in Google Scholar

Sánchez-Valdes, S., Zapata-Domínguez, A. G., Martinez-Colunga, J. G., Mendez-Nonell, J., Ramos de Valle, L. F., Espinoza-Martinez, A. B., Morales-Cepeda, A., Lozano-Ramirez, T., Lafleur, P. G. and Ramirez-Vargas, E., “Influence of Functionalized Polypropylene on Polypropylene/Graphene Oxide Nanocomposite Properties", Polym. Compos., 39, 1361–1369 (2018), DOI:10.1002/pc.24077 Search in Google Scholar

Song, N., Yang, J., Ding, P., Tang, S., Liu, Y. and Shi, L., “Effect of Covalent-Functionalized Graphene Oxide with Polymer and Reactive Compatibilization on Thermal Properties of Maleic Anhydride Grafted Polypropylene", Ind. Eng. Chem. Res., 53, 19951–19960 (2014), DOI:10.1021/ie5031985 Search in Google Scholar

Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S. and Dai, H., “Nano-Graphene Oxide for Cellular Imaging and Drug Delivery", Nano Res., 1, 203–212 (2008), DOI:10.1007/s12274-008-8021-8 Search in Google Scholar

Van Vlack, L. H.: Elements of Materials Science and Engineering, 6 Edition, Addison-Wesley, Michigan (1989) Search in Google Scholar

Yetgin, S. H.,“Tribological Properties of Compatabilizer and Graphene Oxide-Filled Polypropylene Nanocomposites", Bull. Mater. Sci., 43, 89–96 (2020), DOI:10.1007/s12034-020-2061-4 Search in Google Scholar

Yuan, B., Bao, C., Song, L., Hong, N., Liew, K. M. and Hu, Y., “Preparation of Functionalized Graphene Oxide/Polypropylene Nanocomposite with Significantly Improved Thermal Stability and Studies on the Crystallization Behavior and Mechanical Properties", Chem. Eng. J., 237, 411–420 (2014), DOI:10.1016/j.cej.2013.10.030 Search in Google Scholar

Zheng, Q., Xue, Q., Yan, K., Hao, L., Li, Q. and Gao, X., “Investigation of Molecular Interactions between SWNT and Polyethylene/Polypropylene/Polystyrene/Polyaniline Molecules", J. Phys. Chem. C, 111, 4628–4635 (2007), DOI:10.1021/jp066077c Search in Google Scholar

Received: 2020-12-11
Accepted: 2021-02-04
Published Online: 2021-07-07
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany