Accessible Unlicensed Requires Authentication Published by De Gruyter November 16, 2021

Synergistic Flame-Retardant Effect of Aluminum Diethyl Phosphinate in PP/IFR System and the Flame-Retardant Mechanism

J.-L. Li, C.-T. Gao, X. Sun, S.-G. Peng, Y.-W. Wang and S.-H. Qin

Abstract

Synergistic flame-retardant effect of aluminum diethyl phosphinate (AlPi) in intumescent flame retardant polypropylene (PP/IFR) system and the flame-retardant mechanism were investigated. The flame retardancy of PP/IFR/AlPi (the mass ratio of IFR to AlPi is 2 : 1) was the best, which was proved by the results of the limiting oxygen index (LOI) test, UL-94 test, and cone calorimeter test ( CCT) test. Here, the LOI value of the sample was as high as 34% and passed the V–0 rating in UL–94 test. The peak heat release rate (PHRR) decreased by 92.57%, the total heat release (THR) reduced by 90.52%. Thermogravimetric (TGA) data showed that the introduction of AlPi improved thermal stability and changed the thermal degradation behavior of PP/IFR composites. Interestingly, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS) and laser Raman spectroscopy (LRS) proved that PP/IFR/AlPi had formed more residual carbon, but the flame retardancy was worse than PP/IFR/AlPi. This is because when the mass ratio of IFR to AlPi is 2 : 1, the synergy between IFR and AlPi was significant, gas-phase flame retardant and condensed-phase flame retardant reached a balance and obtained the best flame retardant effect.


Shuhao Qin, College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, PRC


Acknowledgements

This research was funded by National Natural Science Foundation of China, grant number was 52063007; Guizhou Province High-level Innovative Talent Project, grant number was Qianke He Platform Talent [2020]6024; Guizhou Province Science and Technology Support Plan Project, grant number was Qianke He Support [2019] 2029; Guizhou Province Science and Technology Support Plan Project, grant number was Qianke He Support (2020) No. 4Y021; Guizhou postgraduate research fund, grant number was Guizhou Education Cooperation YJSCXJH[2019]003.

References

Boyles, E., Tan, H.-L., Wu, Y., Nielsen, C. K., Shen, L., Reiner, E. J. and Chen, D., “Halogenated Flame Retardants in Bobcats from the Midwestern United States", Environ. Pollut., 221, 191–198(2016), DOI:10.1016/j.envpol.2016.11.06310.1016/j.envpol.2016.11.063Search in Google Scholar

Braun, U., Bahr, H., Sturm, H. and Schartel, B., “Flame Retardancy Mechanisms of Metal Phosphinates and Metal Phosphinates in Combination with Melamine Cyanurate in Glass-Fiber Reinforced Poly(1,4-butylene terephthalate): The Influence of Metal Cation", Polym. Adv. Technol., 19, 680–692 (2010), DOI:10.1002/pat.114710.1002/pat.1147Search in Google Scholar

Chen, X., Jiao, C.-M., “Study on Flame Retardance of Co-Microencapsulated Ammonium Polyphosphate and Pentaerythritol in Polypropylene", Polym. Eng. Sci., 48, 2426–2431 (2010), DOI:10.1002/pen.2119810.1002/pen.21198Search in Google Scholar

Chen, S.-J., Li, J., Zhu, Y.-K., Guo, Z.-B. and Su, S.-P., “Increasing the Efficiency of Intumescent Flame Retardant Polypropylene Catalyzed by Polyoxometalate Based Ionic Liquid", J. Mater. Chem. A., 1, 15242 (2013), DOI:10.1039/c3ta13538a10.1039/c3ta13538aSearch in Google Scholar

Cao, Y.-F., Qian, L.-J., Chen, Y.-J. and Wang, Z., “Synergistic Flame-Retardant Effect of Phosphaphenanthrene Derivative and Aluminum Diethylphosphinate in Glass Fiber Reinforced Polyamide 66", J. Appl. Polym. Sci., 134, 1–8 (2017), DOI:10.1002/app.4512610.1002/app.45126Search in Google Scholar

Dou, Y.-L., Li, X.-F., Zhang, T.-Q. and Hong, X., “An Intumescent Flame-Retardant Layer with B-Cyclodextrin as Charring Agent and its Flame Retardancy in Jute/Polypropylene Composites", Polym. Bull., 1, 1–16 (2020), DOI:10.1007/s00289-020-03315-z10.1007/s00289-020-03315-zSearch in Google Scholar

Demir, H., Ark, E., Balk Se, D. and Ülkü, S., “Synergistic Effect of Natural Zeolites on Flame Retardant Additives", Polym. Degrad. Stab., 89, 478–483 (2005), DOI:10.1016/j.polymdegradstab.2005.01.02810.1016/j.polymdegradstab.2005.01.028Search in Google Scholar

Elbasuney, S., Maraden, A., “Novel Thermoset Nanocomposite Intumescent Coating Based on Hydroxyapatite Nanoplates for Fireproofing of Steel Structures", J. Inorg. Organomet. P., 13, 820–830 (2019), DOI:10.1007/s10904-019-01260-710.1007/s10904-019-01260-7Search in Google Scholar

Feng, C.-M., Zhang, Y., Liang, D., Liu, S.-W., Chi, Z.-G. and Xu, J.-R., “Flame Retardancy and Thermal Degradation Behaviors of Polypropylene Composites with Novel Intumescent Flame Retardant and Manganese Dioxide", J. Anal. Appl. Pyrolysis., 104, 59–67 (2013), DOI:10.1016/j.jaap.2013.09.00910.1016/j.jaap.2013.09.009Search in Google Scholar

Feng, C.-M., Zhang, Y., Liu, S.-W., Chi, Z.-G. and Xu, J.-R., “Synergistic Effect of La2O3 on the Flame Retardant Properties and the Degradation Mechanism of a Novel PP/IFR System", Polym. Degrad. Stab., 97, 707–714 (2012), DOI:10.1016/j.polymdegradstab.2012.02.01410.1016/j.polymdegradstab.2012.02.014Search in Google Scholar

Feng, C.-M., Zhang, Y., Liang, D., Liu, S.-W., Chi, Z.-G. and Xu, J.-R., “Influence of Zinc Borate on the Flame Retardancy and Thermal Stability of Intumescent Flame Retardant Polypropylene Composites", J. Anal. Appl. Pyrolysis., 115, 224–232 (2015), DOI:10.1016/j.jaap.2015.07.01910.1016/j.jaap.2015.07.019Search in Google Scholar

Feng, C.-M., Zhang, Y., Liu, S.-W., Chi, Z.-G. and Xu, J.-R., “Synergistic Effects of 4A Zeolite on the Flame Retardant Properties and Thermal Stability of a Novel Halogen-Free PP/IFR Composite", Polym. Adv. Technol., 24, 478–486 (2013), DOI:10.1002/pat.310810.1002/pat.3108Search in Google Scholar

Feng, C.-M., Liang, M.-Y., Chen, W.-J., Huang, J.-G. and Liu, H.-B., “Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant EVA Composite with Efficient Charring Agent", J. Anal. Appl. Pyrolysis, 113, 266–273 (2015), DOI:10.1016/j.jaap.2015.01.02110.1016/j.jaap.2015.01.021Search in Google Scholar

Gómez-Monterde, J., Sánchez-Soto, M., and Maspoch, M. L., “Microcellular PP/GF Composites: Morphological, Mechanical and Fracture Characterization", Composites Part A, 104, 1–13 (2017), DOI:10.1016/j.compositesa.2017.10.01410.1016/j.compositesa.2017.10.014Search in Google Scholar

Gavgani, J. N., Adelnia, H., Sadeghi, G. M. M. and Zafari, F., “Intumescent Flame Retardant Polyurethane/Starch Composites: Thermal, Mechanical, and Rheological Properties", J. Appl. Polym. Sci., 131, 1–9 (2014), DOI:10.1002/app.4115810.1002/app.41158Search in Google Scholar

Huang, W.-J., He, W.-T., Long, L.-J., Yang, E.-X., Qin, S.-H. and Yu, J., “Flame Retardant and Mechanical Properties of a Novel P-containing High Temperature Nylon Composites", J. Mater. Eng., 46, 68–75 (2018), DOI:10.11868/j.issn.1001-4381.2016.00137410.11868/j.issn.1001-4381.2016.001374Search in Google Scholar

Ke, H.-M., Zhu, R.-P., Ma, J.-H. and Gong, J.-H., “Preparation and Properties of Halogen-Free Flame Retardant Polyurethane for Superfine Fiber Leather", Mater. Sci. Forum., 933, 669–677 (2020), DOI:10.4028/www.scientific.net/MSF.993.66910.4028/www.scientific.net/MSF.993.669Search in Google Scholar

Liu, G.-S., Chen, W.-Y., “Flame-Retardency Properties of Tris(2-hydroxyethyl) Isocyanurate Based Charring Agents on Polypropylene", J. Appl. Polym. Sci., 16, 1–7 (2015), DOI:10.1002/app.4181010.1002/app.41810Search in Google Scholar

Liu, Y., Wang, Q., “Catalytic Action of Phospho-Tungstic Acid in the Synthesis of Melamine Salts of Pentaerythritol Phosphate and their Synergistic Effects in Flame Retarded Polypropylene", Polym. Degrad. Stab., 91, 2513–2519 (2006), DOI:10.1016/j.polymdegradstab.2006.03.00910.1016/j.polymdegradstab.2006.03.009Search in Google Scholar

Li, N., Xia, Y., Mao, Z.-W., Wang, L., Guan, Y. and Zheng, A.-N., “Synergistic Effect of SiO2 on Intumescent Flame-retardant Polypropylene", Polym. Polym. Compos., 21, 439–448 (2013), DOI:10.1177/09673911130210070510.1177/096739111302100705Search in Google Scholar

Luo, J.-Y., Tian, Q., Qin, S.-H., Qi, Y.-T., Li, J.-L. and Zhang, D.-H., “Effect of Organoclay Content on Thermal Stability Properties of Polypropylene/Organoclay Nanocomposites", J. Thermoplast. Compos., 4, 1–22 (2019), DOI:10.1177/089270571989506010.1177/0892705719895060Search in Google Scholar

Qi, H.-S., Liu, S.-W., Chen, X.-L., Shen, C.-H. and Gao, S.-J., “The Flame Retardant and Thermal Performances of Polypropylene with a Novel Intumescent Flame Retardant", J. Appl. Polym. Sci., 137, 1–10 (2020), DOI:10.1002/app.4904710.1002/app.49047Search in Google Scholar

Qin, Z.-L., Li, D.-H., Zhang, W.-C. and Yang, R.-J., “Surface Modification of Ammonium Polyphosphate with Vinyltrimethoxysilane: Preparation, Characterization, and its Flame Retardancy in Polypropylene", Polym. Degrad. Stab., 119, 139–150 (2015), DOI:10.1016/j.polymdegradstab.2015.05.01210.1016/j.polymdegradstab.2015.05.012Search in Google Scholar

Song, Y.-P., Wang, D.-Y., Wang, X.-L., Lin, L. and Wang, Y.-Z., “A Method for Simultaneously Improving the Flame Retardancy and Toughness of PLA", Polym. Adv. Technol., 22, 2295–2301 (2011), DOI:10.1002/pat.176010.1002/pat.1760Search in Google Scholar

Tuinstra, F., Koenig, J. L., “Characterization of Graphite Fiber Surfaces with Raman Spectroscopy", J. Compos. Mater., 4, 492–499 (2016), DOI:10.1177/00219983700040040510.1177/002199837000400405Search in Google Scholar

Wang, C., Wu, Y.-C., Li, Y.-C., Shao, Q. and Guo, Z.-H., “Flame-Retardant Rigid Polyurethane Foam with a Phosphorus-Nitrogen Single Intumescent Flame Retardant", Polym. Adv. Technol., 29, 1–9 (2018), DOI:10.1002/pat.410510.1002/pat.4105Search in Google Scholar

Wang, X., Xuan, S.-Y., Song, L., Yang, H.-Y., Lu, H.-D. and Hu, Y., “Synergistic Effect of POSS on Mechanical Properties, Flammability, and Thermal Degradation of Intumescent Flame Retardant Polylactide Composites", J. Macromol. Sci. B., 51, 255–268 (2011), DOI:10.1080/00222348.2011.58533410.1080/00222348.2011.585334Search in Google Scholar

Wang, D.-Y., Cai, X.-X., Qu, M.-H., Liu, Y., Wang, J.-S. and Wang, Y.-Z., “Preparation and Flammability of a Novel Intumescent Flame-Retardant Poly(ethylene-co-vinyl acetate) System", Polym. Degrad. Stab., 93, 2186–2192 (2008), DOI:10.1016/j.polymdegradstab.2008.07.03210.1016/j.polymdegradstab.2008.07.032Search in Google Scholar

Xu, M.-J., Wang, J., Ding, Y.-H. and Li, B., “Synergistic Effects of Aluminum Hypophosphite on Intumescent Flame Retardant Polypropylene System", Chinese. J. Polym. Sci., 33, 318–328 (2015), DOI:10.1007/s10118-015-1588-010.1007/s10118-015-1588-0Search in Google Scholar

Yew, M. C., Sulong, H. R., “Fire-Resistive Performance of Intumescent Flame-Retardant Coatings for Steel", Mater. Des., 34, 719–724 (2012), DOI:10.1016/j.matdes.2011.05.03210.1016/j.matdes.2011.05.032Search in Google Scholar

Yi, J.-S., Yin, H.-Q. and Cai, X.-F., “Effects of Common Synergistic Agents on Intumescent Flame Retardant Polypropylene with a Novel Charring Agent", J. Therm. Anal. Calorim., 111, 725–734 (2013), DOI:10.1007/s10973-012-2211-z10.1007/s10973-012-2211-zSearch in Google Scholar

Zhang, F., Sun, W.-Y., Wang, Y. and Liu, B.-S., “Influence of the Pentaerythritol Phosphate Melamine Salt Content on the Combustion and Thermal Decomposition Process of Intumescent Flame-Retardant Ethylene-Vinyl Acetate Copolymer Composites", J. Appl. Polym. Sci., 132, 1–7 (2015), DOI:10.1002/app.4214810.1002/app.42148Search in Google Scholar

Zhu, Y.-L., Shi, Y.-Q., Huang, Z.-Q., Duan, L.-L., Tai, Q.-L. and Hu, Y., “Novel Graphite-Like Carbon Nitride/Organic Aluminum Diethylhypophosphites Nanohybrid: Preparation and Enhancement on Thermal Stability and Flame Retardancy of Polystyrene", Composites Part A, 99, 149–156 (2017), DOI:10.1016/j.compositesa.2017.03.02310.1016/j.compositesa.2017.03.023Search in Google Scholar

Received: 2020-12-16
Accepted: 2021-04-13
Published Online: 2021-11-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany