Abstract
Industry 4.0 and digitalization are widely argued for the future success of numerous industrial solutions. Big data management might lead to the assumption that every issue can be solved numerically without any physical background. To some extent, this strategy will help within the plastics industry in general and in the extrusion technology in particular. However, a deep process knowledge together with process-relevant sensors, as well as the right process arrangements within the processing chain combined with smart data mining methods will be still the key success of industry 4.0. This presentation illustrates, based on a brief review on existing control strategies (Part 1), including sensory and predictive control models for reactive extrusion applied at a real-life on-site best practice project (Part 2), possibilities in combination of process tasks with digitalization approaches for PP-Polymer production. Specifically, rheological research conducted with a novel, patented multi-point rheometer (part 3), will provide a deeper insight into dynamic processes such as reactive extrusion. With those results and derivations thereof, improvements in predictive process control in addition to artificial control systems are made and might even lead to further interesting opportunities.
Acknowledgements
The authors would like to thank the fruitful discussions within the project group, especially with the team and colleagues of the Institute of Polymer Extrusion and Compounding at the Johannes Kepler University Linz, Austria. A special thanks is given to Dr. Richard S. Meyer of the Pennsylvania State University who spent many hours in correcting and finding better expressions for this article. Finally, the authors would also like to thank the colleagues from the company Leistritz Extrusion-stechnik GmbH as well as for the support and the material provided for the study from the Company Neftechim, Kazakhstan.
References
Abeykoon, C., Mcafee, M., Li, K., Martin, P. J. and Kelly, A. L., “The Inferential Monitoring of Screw Load Torque to Predict Process Fluctuations in Polymer Extrusion", SPE ANTEC Tech. Papers, 1799–1806 (2010)10.1016/j.jmatprotec.2011.05.002Search in Google Scholar
Abeykoon, C., Li, K., McAfee, M., Martin, P. J, Niu, Q., Kelly A. L. and Deng J., “A New Model-Based Approach for the Prediction and Optimization of the Thermal Homogeneity in Single Screw Extruder", Control Eng. Pract., 19, 862–874 (2011), DOI:10.1016/j.conengprac.2011.04.01510.1016/j.conengprac.2011.04.015Search in Google Scholar
Abeykoon, C., “Single Screw Extrusion Control: A Comprehensive Review and Directions of Improvements", Control Eng. Pract., 51, 69–80 (2016a), DOI:10.1016/j.conengprac.2016.03.00810.1016/j.conengprac.2016.03.008Search in Google Scholar
Abeykoon, C., “Soft Sensing of Melt Temperature in Polymer Extrusion", in Proceedings of the 15th European Control Conference, Aalborg, Denmark, 340–345 (2016b), DOI:10.1109/ECC.2016.781030810.1109/ECC.2016.7810308Search in Google Scholar
Abeykoon, C., “Design and Applications of Soft Sensors in Polymer Processing: A Review", IEEE Sens. J., 19, 2801–2813 (2019), DOI:10.1109/JSEN.2018.288560910.1109/JSEN.2018.2885609Search in Google Scholar
Aggarwal, C. C.: Neural Networks and Deep Learning, 1st Edition, Springer International Publishing, Cham (2018)10.1007/978-3-319-94463-0Search in Google Scholar
Apostol, S., Putz, V., Unger, T. and Miethlinger, J., “Methoden zur In-Line Untersuchung des Einflusses der Molmasse und Vorgeschichte von Wandgleitenden Kunststoffschmelzen auf deren Strömungsprofil", Tech. Mess., 83, 628–646 (2016), DOI:10.1515/teme-2016-002710.1515/teme-2016-0027Search in Google Scholar
Azizi, H., Ghasemi, I., “Reactive Extrusion of Polypropylene: Production of Controlled-Rheology Polypropylene (CRPP) by Peroxide-Promoted Degradation", Polym. Test., 23, 137–143 (2004), DOI:10.1016/S0142-9418(03)00072-210.1016/S0142-9418(03)00072-2Search in Google Scholar
Azizi, H., Ghasemi, I. and Karrabi, M., “Controlled-Peroxide Degradation of Polypropylene: Rheological Properties and Prediction of MWD from Rheological Data", Polym. Test., 27, 548–554 (2008), DOI:10.1016/j.polymertesting.2008.02.00410.1016/j.polymertesting.2008.02.004Search in Google Scholar
Basu, S., “Realization of Fuzzy Logic Temperature Controller", Intern. Journal of Emerging Technology and Advanced Engineering, 2, 151–155 (2012)Search in Google Scholar
Beevers, A., Reynolds, A., “Compounding Industry Overview – Overview about the Resin Market" in AMI ’16, Compounding World Forum: Philadelphia/PA, 13–14, Session 1 (2016)Search in Google Scholar
Bennett, S., “Development of the PID Controller," in IEEE Control Syst. Mag., 13, 58–62, (1993), DOI:10.1109/37.24800610.1109/37.248006Search in Google Scholar
Berzin, F., Vergnes, B., “Peroxide-Controlled Degradation of Poly(-propylene): Rheological Behavior and Process Modelling", Macromol. Symp., 158, 70–90 (2000), DOI:10.1002/1521-3900(200008)158 :1<77::AID-MASY77>3.0.-CO;2-310.1002/1521-3900(200008)158 :1<77::AID-MASY77>3.0.-CO;2-3Search in Google Scholar
Berzin, F., Vergnes, B., Dufossé, P. and Delamare, L., “Modelling of Peroxide Initiated Controlled Degradation of Polypropylene in a Twin Screw Extruder", Polym. Eng. Sci., 40, 344–355 (2004), DOI:10.1002/pen.1116810.1002/pen.11168Search in Google Scholar
Berzin, F., Vergnes, B., Canevarolo, S. V., Machado, A. V. and Covas, J. A., “Evolution of the Peroxide-Induced Degradation of Polypropylene along a Twin-Screw Extruder: Experimental Data and Theoretical Predictions", J. Appl. Polym. Sci., 99, 2082–2090 (2005), DOI:10.1002/app. 2272910.1002/app. 22729Search in Google Scholar
Beyer, G., Hopmann, C.: Reactive Extrusion: Principles and Applications, 1st Edition, Wiley-VCH, Weinheim (2018), DOI:10.1002/9783527801541.ch110.1002/9783527801541.ch1Search in Google Scholar
Boukhris, A., Mourot, G. and Aragot, J., “Non-Linear Dynamic System Identification: A Multi-Modal Approach", Int. J. Control, 72, 591–604 (1999), DOI:10.1080/00207179922079510.1080/002071799220795Search in Google Scholar
Box, G. E. P., Jenkins, G.: Time Series Analysis, Forecasting and Control, Revised Edition, Holden Day, San Francisco, CA, 1970 (1976)Search in Google Scholar
Broadhead, T. O., Patterson, W. I. and Dealy, J. M., “Closed Loop Viscosity Control of Reactive Extrusion with an In-Line Rheometer", Polym. Eng. Sci., 36, 2840–2851 (1996), DOI:10.1002/pen.1068510.1002/pen.10685Search in Google Scholar
Camacho, E. F., Bordons, C.: Model Predictive Control, 2nd Edition, Springer International Publishing, London (2007), DOI:10.1007/978-0-85729-398-5_110.1007/978-0-85729-398-5_1Search in Google Scholar
Carrot, C., Revenu, P. and Guillet, J. R., “Rheological Behavior of Degraded Polypropylene Melts. From MWD to Dynamic Moduli", J. Appl. Polym. Sci., 62, 1887–1897 (1996), DOI:10.1002/(SICI)1097-4628(19960912)61 : 11<1887::AID-APP4>3.0.CO;2-F10.1002/(SICI)1097-4628(19960912)61 : 11<1887::AID-APP4>3.0.CO;2-FSearch in Google Scholar
Cassagnau, P., Bounor-Legaré, V. and Vergnes, B., “Experimental and Modelling Aspects of the Reactive Extrusion Process", Mechanics & Industry, 20, 803 (2019), DOI:10.1051/meca/201905210.1051/meca/2019052Search in Google Scholar
Chan, D., Nelson, R. W. and Lee, L. J., “Dynamic Behavior of a Single Screw Plasticating Extruder Part II: Dynamic Modelling", Polym. Eng. Sci., 26, 152–161 (1986), DOI:10.1002/pen.76026020710.1002/pen.760260207Search in Google Scholar
Chellamuthu, M., “A Comprehensive Study of the Extensional Rheology of Complex Fluids", Doctoral Dissertations 1896 – February 2014, University of Massachusetts, Amherst (2010), DOI:10.7275/566302310.7275/5663023Search in Google Scholar
Chiu, S. H., You, H. C., and Pong, S. H., “Development of an In-Line Viscometer in an Extrusion Moulding Process", J. Appl. Polym. Sci., 63, 919–924 (1997), DOI:10.1002/(SICI)1097-4628(19970214)63 : 7<919::AID-APP12>3.0.CO;2-M10.1002/(SICI)1097-4628(19970214)63 : 7<919::AID-APP12>3.0.CO;2-MSearch in Google Scholar
Chiu, S. H., Lin, C. C., “Applying the Constrained Minimum Variance Control Theory on In-Line Viscosity Control in the Extrusion Molding Process", J. Polym. Res., 5, 171–174 (1998), DOI:10.1007/S10965-006-0053-810.1007/S10965-006-0053-8Search in Google Scholar
Chiu, S. H., Pong, S. H., “In-Line Viscosity Fuzzy Control", J. Appl. Polym. Sci., 79, 1249–1255 (2000), DOI:10.1002/1097-4628(20010214)79 : 7<1249::AID-APP120>3.0.CO;2-910.1002/1097-4628(20010214)79 : 7<1249::AID-APP120>3.0.CO;2-9Search in Google Scholar
Choulak, S., Couenne, F., Thomas, G., Cassagnau, P. and Michel, A., “Methodology for Robust Control of Pressure for E-Caprolactone Polymerization in a Twin Screw Extruder", CHIMIA International Journal of Chemistry, 55, 244–246 (2001)10.2533/chimia.2001.244Search in Google Scholar
Choulak, S., Couenne, F., Legorrec, Y., Jallut, C., Cassagnau, P. and Michel, A., “Generic Dynamic Model for Simulation and Control of Reactive Extrusion", Ind. Eng. Chem. Res., 43, 7373–7382 (2004), DOI:10.1021/ie034296410.1021/ie0342964Search in Google Scholar
Copeland, B. J., “Artificial Intelligence", Encyclopædia Britannica, https://www.britannica.com/technology/artificial-intelligence (2020)Search in Google Scholar
Dealy, J. M., Broadhead, T. O., “Process Rheometers for Molten Plastics: A Survey of Existing Technologies", Polym. Eng. Sci., 33, 1513–1523 (1993), DOI:10.1002/pen.76033230210.1002/pen.760332302Search in Google Scholar
Dearmitt, C.: Innovation Abyss – An Innovator’s Solutions to Corporate Innovation Failure, Phantom Publisher LLC, Fairburn/GA (2016)Search in Google Scholar
Dittmar, R., Pfeiffer, B.-M.: Modellbasierte Prädiktive Regelung: Eine Einführung für Ingenieure, Oldenburg Wissenschaftsverlag, Munich (2004), DOI:10.1515/978348659491110.1515/9783486594911Search in Google Scholar
Dowe, D. L., (Ed.), Wood, I., Sunehag, P. and Hutter, M.: Algorithmic Probability and Friends: Bayesian Prediction and Artificial Intelligence, Springer International Publishing, Berlin (2013), DOI:10.1007/978-3-642-44958-110.1007/978-3-642-44958-1Search in Google Scholar
Eaton, J. W., Rawlings, J. B., “Model Predictive Control of Chemical Processes", Chem. Eng. Sci., 33, 1513–1523 (1992), DOI:10.1016/0009-2509(92)80263-C10.1016/0009-2509(92)80263-CSearch in Google Scholar
Ebner, K., White, J. L., “Peroxide Induced and Thermal Degradation of Polypropylene", Int. Polym. Proc., 9, 233–239 (1994), DOI:10.3139/217.94023310.3139/217.940233Search in Google Scholar
Eckstein, A., Friedrich, C., Lobbrecht, A., Spitz, R. and Mülhaupt, R., “Comparison of the Viscoelastic Properties of Syndio- and Isotactic Polypropylenes", Acta Polym., 48, 41–46 (1997), DOI:10.1002/actp. 1997.01048010710.1002/actp. 1997.010480107Search in Google Scholar
Eckstein, A., Suhm, J., Friedrich, C., Maier, R. D., Sassmanshausen, J., Bochmann, M. and Mülhaupt, R., “Determination of Plateau Moduli and Entanglement Molecular Weights of Isotactic, Syndiotactic, and Atactic Polypropylenes Synthesized with Metallocene Catalysts", Macromolecules, 31, 1335–1340 (1998), DOI:10.1021/ma971270d10.1021/ma971270dSearch in Google Scholar
Eker, A., Giammattia, M., Houpt, P., Kumar, A., Montero, O., Shah, M., Silvi, N. and Cribbs, T., “Intelligent Extruder for Polymer Compounding", GE Global Res. Autom. Control Lab, New York, (2003), DOI:10.2172/81072410.2172/810724Search in Google Scholar
EN-ISO 1133–1: 2012–03, Bestimmung der Schmelze-Massefließrate (MFR) und der Schmelze-Volumenfließrate (MVR) von Thermoplasten: Teil 1: Allgemeines Prüfverfahren (ISO 1133–1: 2011) (2011)Search in Google Scholar
Fingerle, D., “Autogenic Melt Temperature Control System for Plastic Extrusion", J. Elastomers Plast., 10, 293–310 (1975), DOI:10.1177/00952443780100040110.1177/009524437801000401Search in Google Scholar
Fogel, D. B.: Evolutionary Computation: Toward a New Philosophy ofMachine Intelligence, 3rd Edition, Whiley Interscience, New York (2006)Search in Google Scholar
Fontaine, W. R., “Analysis and Modelling of Dynamic Behaviour of Plasticating Extruder" PhD Thesis, Ohio State University, Ohio (1975)Search in Google Scholar
Fortuna, L., Graziani, S. and Xibilia, M. G., “Comparison of Soft-Sensors Design Methods for Industrial Plants Using Small Data Sets", IEEE Trans. Instrum. Meas, 58, 2444–2451 (2009), DOI:10.1109/TIM.2009.201638610.1109/TIM.2009.2016386Search in Google Scholar
Fritz, H., Stöhrer, B., “Polymer Compounding Process for Controlled Peroxide-Degradation of Polypropylene", Int. Polym. Proc., 1, 31–34 (1986), DOI:10.3139/217.86003110.3139/217.860031Search in Google Scholar
Ganzeveld, K. J., Capel, J. E., Vanderwal, D. J. and Jansen, L., “The Modeling of Counter-Rotating Twin-Screw Extruders as Reactor for Single-Component Reactions", Chem. Eng. Sci., 49, 1639–1649 (1994), DOI:10.1016/0009-2509(93)E0023-610.1016/0009-2509(93)E0023-6Search in Google Scholar
Garcia, C. E., Prett, D. M. and Morari, M., “Model Predictive Control: Theory and Practice – A Survey", Automatica, 25, 335–348 (1989), DOI:10.1016/0005-1098(89)90002-210.1016/0005-1098(89)90002-2Search in Google Scholar
Garge, S. C., Wetzel, M. D. and Ogunnaike, B. A., “Inference-Based Scheme for Controlling Product End-Use Properties in Reactive Extrusion Process", Ind. Eng. Chem. Res., 49, 8021–8034 (2010), DOI:10.1021/ie100435s10.1021/ie100435sSearch in Google Scholar
Garge, S. C., Wetzel, M. D. and Ogunnaike, B. A., “Control-Relevant Model Identification of Reactive Extrusion Processes", J. Process Control, 22, 1457–1467 (2012), DOI:10.1016/j.jprocont.2012.01.02010.1016/j.jprocont.2012.01.020Search in Google Scholar
Germuska, D. D., Taylor, P. A. and Wright, J. D., “Adaptive and Multi-variable Control of a Single Screw Extrusion System", Can. J. Chem. Eng., 62, 790–801 (1984), DOI:10.1002/cjce.545062060910.1002/cjce.5450620609Search in Google Scholar
Gimenez, J., Boudris, M., Cassagnau, P. and Michael, A., “A Control of Bulk E-Caprolactone Polymerization in a Twin Screw Extruder", Polym. React. Eng., 8, 135–157 (2000), DOI:10.1080/10543414.2000.1074454510.1080/10543414.2000.10744545Search in Google Scholar
Gogos, C. G., Kim, M. H., “Melting Phenomena and Mechanism in Polymer Processing Equipment", Conference Proceedings SPE ANTEC 2000, 1, 134ff (2000), DOI:10.1002/(SICI)1098-2329(199824)17 : 4<285::AID-AD-V1>3.0.CO;2-N10.1002/(SICI)1098-2329(199824)17 : 4<285::AID-AD-V1>3.0.CO;2-NSearch in Google Scholar
Gonzalez, G. D., “Soft Sensing for Processing Plants", Proceedings 2nd International Conference of Intelligent Process Manufacturing Materials, Honolulu, HI, USA, 1, 59–69 (1999), DOI:10.1109/IPMM.1999.79245410.1109/IPMM.1999.792454Search in Google Scholar
Grimard, J., Dewasme, L. and Vande Wouver, A., “Modelling, Sensitivity Analysis and Parameter Identification of a Twin Screw Extruder", in IFAC-Papers online, 49, 1127–1132 (2016);, DOI:10.1016/j.ifacol.2016.07.35410.1016/j.ifacol.2016.07.354Search in Google Scholar
Grimard, J., Dewasme, L. and Vande Wouver, A., “Dynamic Modeling and Model-Based Control of a Twin Screw Extruder", 25th Mediterranean Conference on Control and Automation (MED), Valetta, Malta, 316–321 (2017), DOI:10.1109/MED.2017.798413710.1109/MED.2017.7984137Search in Google Scholar
Guidici, R., Donasciamento, C. A. O., Beiler, I. C. and Scherbakoff, N., “Transient Experiments and Mathematical Modelling of an Industrial Twin-Screw Extruder Reactor for Nylon 6,6 Polymerization", Ind. Eng. Chem. Res., 36, 3513–3519 (1997), DOI:10.1002/(SICI)1097-4628(19980228)67 : 9<1573::AID-APP9>3.0.CO;2-A10.1002/(SICI)1097-4628(19980228)67 : 9<1573::AID-APP9>3.0.CO;2-ASearch in Google Scholar
Gupta, M. M., Qi, J., “Design of Fuzzy Logic Controllers Based on Generalized T-Operators", Fuzzy Sets Syst., 40, 473–489 (1991), DOI:10.1016/0165-0114(91)90173-N10.1016/0165-0114(91)90173-NSearch in Google Scholar
Gupta, M. M., Rao, D. H., “On the Principles of Fuzzy Neural Networks", Fuzzy Sets Syst., 61, 1–18 (1994), DOI:10.1016/0165-0114(94)90279-810.1016/0165-0114(94)90279-8Search in Google Scholar
Guzzella, L.: Analysis and Synthesis of Single-Input-Single-Output Control Systems, 3rd Edition, Vdf Hochschulverlag AG, Zurich (2011)Search in Google Scholar
Hassan, G. A., Parnaby, J. “Model Reference Optimal Steady-State Adaptive Computer Control of Plastics Extrusion Process", Polym. Eng. Sci., 21, 276–284 (1981), DOI:10.1002/pen.76021050510.1002/pen.760210505Search in Google Scholar
Hu, G. H., “Reactive Polymer Processing: Fundamentals of REX", Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam, The Netherlands, p. 8049–8057 (2001), DOI:10.1016/B0-08-043152-6/01446-710.1016/B0-08-043152-6/01446-7Search in Google Scholar
Iedema, P. D., Remerie, K., van der Ham, M., Biemond, E. and Tacx, J., “Controlled Peroxide-Induced Degradation of Polypropylene in a Twin-Screw Extruder: Change of Molecular Weight Distribution under Conditions Controlled by Micromixing", Chem. Eng. Sci., 66, 5474–5486 (2011), DOI:10.1016/j.ces.2011.06.07110.1016/j.ces.2011.06.071Search in Google Scholar
Jiang, Z., Yang, Y., Mo, S., Yao, K. and Gao, F., “Polymer Extrusion: From Control System Design to Product Quality", Ind. Eng. Chem. Res., 51, 14759–14770 (2012), DOI:10.1021/ie301036c10.1021/ie301036cSearch in Google Scholar
Johnson, M. A., Moradi, M. H., “PID Control: New Identification and Design Methods", Springer Science and Business Media, London (2005), DOI:10.1007/1-84628-148-210.1007/1-84628-148-2Search in Google Scholar
Kim, B., White, J. L., “Simulation of Thermal Degradation, Peroxide Induced Degradation, and Maleation of Polypropylene in a Modular Co-Rotating Twin Screw Extruder", Polym. Eng. Sci., 37, 576–589 (1997), DOI:10.1002/pen.1170110.1002/pen.11701Search in Google Scholar
Klir, G. J., Yuan, B., “Fuzzy Sets and Fuzzy Logic: Theory and Application", Prentice Hall PTR, New Jersey (1995), DOI:10.1109/45.46822010.1109/45.468220Search in Google Scholar
Kochar, A. K., Parnaby, J., “Dynamic Modelling and Control of Plastics Extrusion Process", Automatica, 13, 177–193 (1977), DOI:10.1016/0005-1098(77)90042-510.1016/0005-1098(77)90042-5Search in Google Scholar
Köpplmayr, T., Luger, H.-J., Burzic, I., Battisti, M. G., Perko, L., Friesenbichler, W. and Miethlinger, J., “A Novel Online Rheometer for Elongational Viscosity Measurement of Polymer Melts", Polym. Test., 50, 208–215 (2016), DOI:10.1016/j.polymertesting.2016.01.01210.1016/j.polymertesting.2016.01.012Search in Google Scholar
Kugler, C., Dietl, K., Hochrein, T., Heidemayr, P. and Bastian, M., “Robust Soft Sensor Based on an Artificial Neuronal Network for Real Time Determination of the Melt Viscosity of Polymers", Proceedings of the 29th Annual Meeting of the Polymer Processing Society, Nuremberg, Germany, 126, 213–216 (2013), DOI:10.1063/1.487376610.1063/1.4873766Search in Google Scholar
Kumar, A., Eker, S. A. and Houpt, P. K., “A Model-Based Approach for Estimation and Control for Polymer Compounding", IEEE Conference on Control Applications, Istanbul, Turkey, 729–735 (2003), DOI:10.1109/CCA.2003.122352810.1109/CCA.2003.1223528Search in Google Scholar
Lacroix, C., Grmela, M., Carreau, P. J., “Morphological Evolution of Immiscible Polymer Blends in Simple Shear and Elongational Flows", J. Non-Newtonian Fluid Mech., 86, 37–59 (1999), DOI:10.1016/S0377-0257(98)00201-810.1016/S0377-0257(98)00201-8Search in Google Scholar
Lambla, M., Covas, J. A., Agassant, J. F., Diogo, A. C., Vlachopoulos, J. and Walters, K. (Eds.): Rheological Fundamentals of Polymer Processing. NATO ASI Series (Series E: Applied Sciences), Springer Netherlands, Dordrecht (2010)Search in Google Scholar
Levy, S., Carley, J. F.: Plastics Extrusion Technology Handbook, 2nd Edition, Industrial Press, New York (1989)Search in Google Scholar
Li, T. Q., Wolcott, M. P., “Rheology of HDPE-Wood Composites. I. Steady State Shear and Extensional Flow", Composites Part A, 35, 303–311 (2004), DOI:10.1016/j.compositesa.2003.09.00910.1016/j.compositesa.2003.09.009Search in Google Scholar
Lin, Y. J., Lee, G., “System Identification for State Feedback Integral Observer Control of Polymer Plastic Extrusion", Polym. Plast. Technol. Eng., 36, 749–775 (1997), DOI:10.1080/0360255970800065910.1080/03602559708000659Search in Google Scholar
Liu, X., Li, K., McAfee, M. and Deng, J., “Soft-Sensor for Real-Time Monitoring of Melt Viscosity in Polymer Extrusion Process", Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta/GA, USA, 3469–3474 (2010), DOI:10.1109/CDC.2010.571780010.1109/CDC.2010.5717800Search in Google Scholar
Liu, X., Li, K., McAfee, M., Nguyen, B. K. and McNally, G. M., “Dynamic Gray-Box Modeling for On-Line Monitoring of Polymer Extrusion Viscosity", Polym. Eng. Sci., 52, 1332–1341 (2012), DOI:10.1002/Pen.2308010.1002/Pen.23080Search in Google Scholar
Luger, H.-J., Köpplmayr, T., Sobczak, L., Haider, A. and Miethlinger, J., “Elongational Rheology of Glass-Fiber and Natural-Fiber-Reinforced Polypropylenes with a Novel Online Rheometer," in Proceedings of PPS-32, Lyon, France, 110002 (2017), DOI:10.1063/1.501675710.1063/1.5016757Search in Google Scholar
Luger, H.-J., Miethlinger, J., “Development of an Online Rheometer for Simultaneous Measurement of Shear and Extensional Viscosity during the Polymer Extrusion Process", Polym. Test., 77, 105914 (2019), DOI:10.1016/j.polymertesting.2019.10591410.1016/j.polymertesting.2019.105914Search in Google Scholar
Luger, H.-J., “High-Performance Extrusion under Consideration of Extensional and Wedge Flows", PhD-Thesis, Johannes Keppler University Linz, Institute of Polymer and Compounding, Linz, Austria (2019)Search in Google Scholar
Machado, A. V., Maia, J. M., Covas, J. A. and Canevarolo, S. V., “Evolution of the Peroxide-Induced Degradation of Polypropylene along a Twin-Screw Extruder", J. Appl. Polym. Sci., 91, 2711–2720 (2004), DOI:10.1002/app. 1347610.1002/app. 13476Search in Google Scholar
Maia, J. M., Carneiro, O. S., Machado, A. V. and Covas, J. A., “On-Line Rheometry for Twin-Screw Extrusion (along the Extruder) and its Application", Appl. Rheol., 12, 18–24 (2002), DOI:10.1515/arh-2002-000210.1515/arh-2002-0002Search in Google Scholar
Mann, G. K. I., Hu, B. G. and Gosine, R. G., “Analysis and Development of New PID Controller Tuning Rules for First Order Process", IFAC Proceedings Volumes, 30, 169–175 (1997), DOI:10.1016/S1474-6670(17)41319-X10.1016/S1474-6670(17)41319-XSearch in Google Scholar
Massey, R, Jacobs, M., Alo, B. and Clapp, R.W., “Chapter 1: Trends and Outlook", in Global Chemical Outlook – Towards Sound Management of Chemicals, United Nation Environment Plan, United Nation, Nairobi, 18–21 (2013)Search in Google Scholar
McAfee, M., “A Soft Sensor for Viscosity Control of Polymer Extrusion", PhD Dissertation, Queens University Belfast, Belfast, UK (2005)Search in Google Scholar
McAfee, M., McNally, G., “Real-Time Measurement of Melt Viscosity in Single-Screw Extrusion", Trans. Inst. Meas. Control, 28, 481–499 (2006), DOI:10.1177/014233120606947810.1177/0142331206069478Search in Google Scholar
McAfee, M., “Enhancing Process Insight in Polymer Extrusion by Grey Box Modelling", Trans. Inst. Meas. Control, 29, 467–488 (2007), DOI:10.1177/014233120707981510.1177/0142331207079815Search in Google Scholar
McAfee, M., Thompson, S., “A Novel Approach to Dynamic Modeling of Polymer Extrusion for Improved Process Control", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 221, 617–628 (2007), DOI:10.1243/09596518JSCE35710.1243/09596518JSCE357Search in Google Scholar
Miethlinger, J., Löw-Baselli, B. and Luger, H.-J., AT Patent AT517311 B1 2017–03–15 (2017)Search in Google Scholar
Minoshima, W., White, J. L. and Spruiell, J. E., “Experimental Investigation of the Influence of Molecular Weight Distribution on Rheological Properties of Polypropylene Melts", Polym. Eng. Sci., 20, 1166–1176 (1980), DOI:10.1002/pen.76020171010.1002/pen.760201710Search in Google Scholar
Morales, J., “Global PP: Putting Capacity Surge and Margin Push in Perspective", 31st Annual World Petrochemical Congress 2016: Huston/TX (2016)Search in Google Scholar
Nelson, R. W., Chan, D., Yang, B. and Lee, L. J., “Dynamic Behavior of a Single Screw Plasticating Extruder Part 1: Experimental Study", Polym. Eng. Sci., 26, 144–151 (1986), DOI:10.1002/pen.76026020610.1002/pen.760260206Search in Google Scholar
Nguyen, B. K., McNally, G. M. and Clarke, A., “Real Time Measurement and Control of Viscosity for Extrusion Processes Using Recycled Material", Polym. Degrad. Stab., 102, 212–221 (2014), DOI:10.1016/j.polymdegradstab.2013.12.03610.1016/j.polymdegradstab.2013.12.036Search in Google Scholar
Nield, S. A., Budman, H. M. and Tzoganakis, C., “Control of a LDPE Reactive Extrusion Process", Control Eng. Pract., 8, 911–920 (2000), DOI:10.1016/S0967-0661(00)00008-310.1016/S0967-0661(00)00008-3Search in Google Scholar
Novak, V., Perfilieva, I. and Mockor, J.: Mathematical Principle of Fuzzy Logic, Springer US, New York (1999), DOI:10.1007/978-1-4615-5217-810.1007/978-1-4615-5217-8Search in Google Scholar
Özbek, M. O., Bayram, G. and Özgen, C., “Molecular Weight Control of Polyethylene Terephthalate in Extrusion Process", Polym. Eng. Sci., 54, 459–465 (2013), DOI:10.1002/pen.2357710.1002/pen.23577Search in Google Scholar
Pabedinskas, A., Cluett, W. R., “Controller Design and Performance Analysis for a Reactive Extrusion Process", Polym. Eng. Sci., 34, 585–597 (1994), DOI:10.1002/pen.76034070710.1002/pen.760340707Search in Google Scholar
Pabedinskas, A., Cluett, W. R. and Balke, S. T., “Modeling of Polypropylene Degradation during Reactive Extrusion with Implication for Process Control", Polym. Eng. Sci., 34, 598–612 (1994), DOI:10.1002/pen.76034070810.1002/pen.760340708Search in Google Scholar
Padmanabhan, M., Bhattacharya, M., “In-Line Measurement of the Rheological Properties of Polymer Melts", Rheol. Acta, 33, 71–87 (1994), DOI:10.1007/BF0045346510.1007/BF00453465Search in Google Scholar
Plastics – the Facts 2018, PlasticsEurope, Brussels, p. 26, https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018 (2018)Search in Google Scholar
Plastics Insight, “All about Polypropylene (PP): Production, Price, Market & its Properties", Plastics Insight, https://www.plasticsin-sight.com/resin-intelligence/resin-prices/polypopylene (2019)Search in Google Scholar
Pong, S. H., Lu, C. P., Wang, M. C. and Chiu, S. H., “Polypropylene Degradation Control during Reactive Extrusion", J. Appl. Polym. Sci., 95, 280–289 (2004), DOI:10.1002/app. 2127510.1002/app. 21275Search in Google Scholar
Potente, H., Kretschmer, K. and Pohl, T., “Physico-Mathematical Model for the Description of the Temperature Development and the Power Consumption in Co-Rotating Twin-Screw Extruders", Int. Polym. Proc., 19, 3–12 (2004), DOI:10.3139/217.180010.3139/217.1800Search in Google Scholar
Poulesquen, A., Vergnes, B., Cassagnau, P., Gimenez, J. and Michel, A., “Polymerization of e-Caprolactone in a Twin Screw Extruder: Experimental Study and Modelling", Int. Polym. Proc., 16, 31–38 (2001), DOI:10.3139/217.162610.3139/217.1626Search in Google Scholar
Poulesquen, A., Vergnes, B., “A Study of Residence Time Distribution in Co-Rotating Twin Screw Extruders: Part I: Theoretical Modelling", Polym. Eng. Sci., 43, 1841–1848 (2004), DOI:10.1002/pen.1015610.1002/pen.10156Search in Google Scholar
Poulesquen, A., Vergnes, B., Cassagnau, P., Michel, A., Carneiro, O. S. and Covas, J. A., “A Study of Residence Time Distribution in Co-Rotating Twin Screw Extruders: Part II: Experimental Validation", Polym. Eng. Sci., 43, 1848–1862 (2004), DOI:10.1002/pen.1015710.1002/pen.10157Search in Google Scholar
Previdi, F., Savaresi, S. M. and Panarotto, A., “Design of a Feedback Control System for Real-Time Control of Flow in a Single-Screw Extruder", Control Eng. Pract., 14, 1111–1121 (2006), DOI:10.1016/j.conengprac.2005.06.01710.1016/j.conengprac.2005.06.017Search in Google Scholar
Rauwendaal, C., Fernandez, F., “Experimental Study and Analysis of a Slit Die Viscosimeter", Polym. Eng. Sci., 25, 765–771 (1985), DOI:10.1002/pen.76025120710.1002/pen.760251207Search in Google Scholar
Rauwendaal, C., Sluis, G. V. D., “Effect of Screw Surface on Extruder Performance", SPE ANTEC Tech. Papers, 313–316 (2004)Search in Google Scholar
Rauwendaal, C.: Polymer Extrusion, 5th Edition, Hanser, Munich (2014), DOI:10.3139/9781569905395.fm10.3139/9781569905395.fmSearch in Google Scholar
Revesz, H., Hubeny, H., “Continuous Measurement and Control of Viscosity through the Extrusion Process", Proceedings of the 3rd IFAC Conference on Instrumentation and Automation in the Rubber and Plastics Industries, Brussels, 69–76 (1975)Search in Google Scholar
Rios, A. C., Gramann, P. J. and Oswald, T. A., “Comparative Study of Mixing in Corotating Twin Screw Extruders Using Computer Simulation", Adv. Polym. Technol., 17, 107–113 (1999), DOI:10.1002/(SICI)1098-2329(199822)17 : 2<107::AID-AD-V2>3.0.CO;2-X10.1002/(SICI)1098-2329(199822)17 : 2<107::AID-AD-V2>3.0.CO;2-XSearch in Google Scholar
Rosato, D. V.: Extruding Plastics: A Practical Processing Handbook, Springer-Science and Business Media, Dordrecht (1998), DOI:10.1007/978-1-4615-5793-710.1007/978-1-4615-5793-7Search in Google Scholar
Russiangost, “All Codes, One Data Base", RGTT LLC, Alief/TX, https://www.russiangost.com/(2019)Search in Google Scholar
Semsarzadeh, M. A., Navarchian, A. H. and Morshedian, J., “Reactive Extrusion of Poly(urethan-isocyanurate)", Adv. Polym. Technol., 23, 239–255 (2004), DOI:10.1002/adv.2001410.1002/adv.20014Search in Google Scholar
Shibryaeva, L., “Chapter 5 Thermal Oxidation of Polypropylene and Modified Polypropylene – Structure Effects", in Polypropylene, Dogan, F. (Ed.), Intech, Rijeka (2012)Search in Google Scholar
Stevens, M. J., Covas, J. A.: Extruder Principles and Operation, 2nd Edition, Springer Science and Business Media, Dordrecht (1995), DOI:10.1007/978-94-011-0557-610.1007/978-94-011-0557-6Search in Google Scholar
Supaphol, P., Harnsiri, W., “Rheological and Isothermal Crystallization Characteristics of Neat and Calcium Carbonate-Filled Syndiotactic Polypropylene", J. Appl. Polym. Sci., 100, 4515–4525 (2006), DOI:10.1002/app. 2245110.1002/app. 22451Search in Google Scholar
Suresh, A., Chakraborty, S., Kargupta, K. and Ganguly, S., “Low-Dimensional Models for Describing Mixing Effects in Reactive Extrusion of Polypropylene", Chem. Eng. Sci., 63, 3788–3801 (2008), DOI:10.1016/j.ces.2008.04.04510.1016/j.ces.2008.04.045Search in Google Scholar
Tasi, C. C., Lu, C. H., “Fuzzy Supervisory Predictive PID Control of a Plastic Extruder Barrel", Journal of the Chinese Institute of Engineers, 21, 619–624 (1998), DOI:10.1080/02533839.1998.967042310.1080/02533839.1998.9670423Search in Google Scholar
Taur, J. S., Tao, C. W. and Tasi, C. C., “Temperature Control of a Plastic Extrusion Barrel Using PID Fuzzy Controllers", Proceedings of the International IEEE/IAS Conference of Industrial Automation and Control, Taipei, Taiwan, 370–375 (1995)Search in Google Scholar
Tayeb, J., Vergnes, B. and Dellavalle, G., “A Basic Model for a Twin Screw Extruder", J. Food Sci. 54, 1047–1056 (1989), DOI:10.1111/j.1365-2621.1989.tb07941.x10.1111/j.1365-2621.1989.tb07941.xSearch in Google Scholar
Tejado, I., Vinagre, B., Traver, J. E., Prieto-Arranz, J. and Nuevo-Gallardo, C., “Back to Basics: Meaning of the Parameters of Fractional Order PID Controllers", Mathematics, 7, 530, 1–16 (2019), DOI:10.3390/math706053010.3390/math7060530Search in Google Scholar
Trouton, F. T., “On the Coefficient of Viscous Traction and its Relation to that of Viscosity", Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 77, 426–440 (1906), DOI:10.1098/rspa.1906.003810.1098/rspa.1906.0038Search in Google Scholar
Tzoganakis, C., “Peroxide Degradation of Polypropylene during Reactive Extrusion", PhD Thesis, McMasters University, Hamilton/Ontario (1988)Search in Google Scholar
Tzoganakis, C., Vlachopoulos, J. and Hamielec, A. E., “Modelling of the Peroxide Degradation of Polypropylene", Int. Polym. Proc., 3, 141–150 (1988), DOI:10.3139/217.88014110.3139/217.880141Search in Google Scholar
Unger, T., Klocke, L., Harrington, K. and Miethlinger, J., “Influence of Process Parameters on the Rheological Behavior of Ultra-High Molecular Weight Compounds", AIP Conference Proceedings, 02005 1–5 (2020), DOI:10.1063/1.514297010.1063/1.5142970Search in Google Scholar
Vergnes, B., Dellavalle, G. and Delamare, L., “Global Computer Software for Polymer Flows in Co-Rotating Twin Screw Extruders", Polym. Eng. Sci., 38, 1781–1792 (1998), DOI:10.1002/pen.1034810.1002/pen.10348Search in Google Scholar
Vergnes, B., Berzin, F., “Modelling of Reactive Systems in Twin-Screw Extrusion: Challenges and Application", C. R. Chim., 9, 1409–1418 (2006), DOI:10.1016/j.crci.2006.07.00610.1016/j.crci.2006.07.006Search in Google Scholar
Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB, Springer International, London (2009)Search in Google Scholar
Wehnert, G., Radlinger, M. R., “Verweilzeitstudie am Doppelschneckenextruder", Contract Work for Leistritz Extrusionstechnik, Georg Simon Ohm Hochschule, Nuremberg (2011)Search in Google Scholar
Weigert, T. J., Tsai, J. P. and Liu, X., “Fuzzy Operator Logic and Fuzzy Resolution", Journal of Automated Reasoning, 10, 59–78 (1993), DOI:10.1007/BF0088186410.1007/BF00881864Search in Google Scholar
White, D. H., Schott, N. R., “Dynamic Testing of Extrusion System", SPE ANTEC Tech. Papers, 797–801 (1972)Search in Google Scholar
Wolf, S., Luger, H.-J. and Miethlinger, J., “Online Elongational Viscosity Measurement for an Improved Evaluation of Melt Quality – A Smart Sensor for Continuous Plastic Processing", Proceedings of PPS-33, Cancun, Mexico, S01–113 (2017), DOI:10.1063/1.512164710.1063/1.5121647Search in Google Scholar
Wolf, S., Luger, H.-J. and Miethlinger, J., “Keeping Track of Elongation", Kunststoffe International, 1–2, 36–40 (2018)Search in Google Scholar
Wood, A. K., Rasid, R., “Effect of Process Variables on Melt Velocity Profiles in Extrusion Process Using Single Screw Plastics Extruder", Plast. Rubber Compos., 32, 193–198 (2003), DOI:10.1179/14658010322500272210.1179/146580103225002722Search in Google Scholar
Wurm, B., “ADCO V7.1 – Adaptive Controller for Siemens PCS7 V7.0/V7.1)", Ingenieurbüro für Prozeßautomations- und Softwaresysteme, Frankfurt, http://www.ipas-systeme.de/wp-content/uploads/2011/04/adco_english_7.1.pdf (2011)Search in Google Scholar
Zadeh, L. A., “Fuzzy Sets", Information and Control, the Journal of Symbolic and Logic, 8, 338–353 (1965), DOI:10.2307/227201410.2307/2272014Search in Google Scholar
Zagal, A., Vivaldo-Lima, E. and Manero, O., “A Mathematical Model for the Reactive Extrusion of Methyl Methacrylate in a Co-Rotating Twin-Screw Extruder", Ind. Eng. Chem. Res., 44, 9805–9817 (2005), DOI:10.1021/ie050585b10.1021/ie050585bSearch in Google Scholar
Ziegler, J. G., Nichols, N. B., “Optimum Settings for Automatic Controllers", Transactions of the ASME, 64, 759–768 (1942), DOI:10.1115/1.289906010.1115/1.2899060Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany