Accessible Requires Authentication Published by De Gruyter July 7, 2021

Investigation of Microstructures and Air Permeability of Aerogel-Coated Textile Fabric Materials

A. Fonner and S. C. Jana


This study focuses on fabrication of aerogel-coated macroporous polyester fabrics for the purposes of filtration of nanometric airborne particles and potential application in facemasks. Syndiotactic polystyrene (sPS) and polyimide (PI) gels that provide respectively majority macropores (diameter > 50 nm) and mesopores (diameter 2 to 50 nm) are coated onto woven polyester fabrics via a dip coating process. The resultant materials are supercritically dried to obtain aerogelcoated fabrics. The results show that sPS is more suitable for the dip coating process. However, evaporation of the solvent during handling of gel-coated fabrics leads to closure of the surface pores that are later recovered via solvent annealing. The resultant aerogel-coated fabrics offer high air permeability (∼10–10 m2) and high filtration efficiency (> 99.95%) of airborne sodium chloride test particles of size 25 to 150 nm.

Sadhan C. Jana, School of Polymer Science and Polymer EngineeringUniversity of Akron, 250 South Forge Street, Akron, OH 44325-0301, USA


Alexander, D. D., EP 0507217 (A1) (1992) Search in Google Scholar

Daniel, C., Alfano, D., Venditto, V., Cardea, S., Reverchon, E., Larobina, D., Mensitieri, G. and Guerra, G., “Aerogels with a Microporous Crystalline Host Phase", Adv. Mater., 17, 1515–1518 (2005), DOI:10.1002/adma.200401762 Search in Google Scholar

George, N. A., Sutsko, M. G. and McKenna, D. B., U. S. Patent 5507847 (1996) Search in Google Scholar

Guise, M. T., Hosticka, B., Earp, B. C. and Norris, P. M., “An Experimental Investigation of Aerosol Collection Utilizing Packed Beds of Silica Aerogel Microspheres", J. Non-Cryst. Solids, 285, 317 – 322 (2001), DOI:10.1016/S0022-3093(01)00473-2 Search in Google Scholar

Hrubesh, L. W., Poco, J. F., “Thin Aerogel Films for Optical, Thermal, Acoustic and Electronic Applications", J. Non-Cryst. Solids, 188, 46–53 (1995), DOI:10.1016/0022-3093(95)00028-3 Search in Google Scholar

Kim, G. S., Hyun, S. H., “Synthesis of Window Glazing Coated with Silica Aerogel Films via Ambient Drying", J. Non-Cryst. Solids, 320, 125–132 (2003), DOI:10.1016/S0022-3093(03)00027-9 Search in Google Scholar

Kim, S. J., Chase, G. and Jana, S. C., “Polymer Aerogels for Efficient Removal of Airborne Nanoparticles", Sep. Purif. Technol., 156, 803–808 (2015), DOI:10.1016/j.seppur.2015.11.005 Search in Google Scholar

Kim, S. J., Chase, G. and Jana, S. C., “The Role of Mesopores in Achieving High Efficiency Airborne Nanoparticle Filtration Using Aerogel Monoliths", Sep. Purif. Technol., 166, 48–54 (2016), DOI:10.1016/j.seppur.2016.04.017 Search in Google Scholar

Kim, S. J., Jana, S. C., “Effects of Skin Layers on Air Permeability in Macroporous Polymer Aerogels", Polymer, 126, 432–436 (2017), DOI:10.1016/j.polymer.2017.03.039 Search in Google Scholar

Kim, S. J., Raut, P., Jana, S. C. and Chase, G., “Electrostatically Active Polymer Hybrid Aerogels for Airborne Nanoparticle Filtration", ACS Appl. Mater. Interf., 9, 6401–6410 (2017), DOI:10.1021/acsami.6b14784 Search in Google Scholar

Lin, R. H., Woo, E. M., “Melting Behavior and Identification of Polymorphic Crystals in Syndiotactic Polystyrene", Polymer, 41, 121 – 131 (2000), DOI:10.1016/S0032-3861(99)00127-5 Search in Google Scholar

Liu, Z. G., Wang, P. K., “Pressure Drop and Interception Efficiency of Multifiber Filters", Aerosol Sci. Technol., 26, 313–325 (2007), DOI:10.1080/02786829708965433 Search in Google Scholar

Mosanenzadeh, S. G., Karamikamkar, S., Saadatnia, Z., Park, C. B. and Naguib, H. E., “PPDA-PMDA Polyimide Aerogels with Tailored Nanostructure Assembly for Air Filtering Applications", Sep. Purif. Technol., 250, 117279 (2020), DOI:10.1016/j.seppur.2020.117279 Search in Google Scholar

Pfeffer, R., Quevedo, J., US Patent 8 632 623 B2 (2014) Search in Google Scholar

Quevedo, J., Patel, G., Pfeffer, R. and Dave, R., “Agglomerates and Granules of Nanoparticles as Filter Media for Submicron Particles", Powder Technol., 183, 480–500 (2008), DOI:10.1016/j.powtec.2008.01.020 Search in Google Scholar

Schwartz, L., White, L., “Modelling of the Dip-Coating Process", SOLA Optical, Study Group Report, 109–123 (1994), Search in Google Scholar

Sun, Z., Morgan, R. J. and Lewis, D. N., “Crystallization of Syndiotactic Polystyrene under Pressure", Polymer, 33, 660–661(1992), DOI:10.1016/0032-3861(92)90749-M Search in Google Scholar

Tang, X., Yan, X., “Dip-Coating for Fibrous Materials: Mechanism, Methods and Applications", J. Sol-Gel Sci. Technol., 81, 378–404 (2017), DOI:10.1007/s10971-016-4197-7 Search in Google Scholar

Wang, X., “Tailoring of Pore Structures and Surface Properties of Syndiotactic Polystyrene Aerogels", PhD Dissertation, University of Akron, Akron (2013), DOI:10.1021/la400492m Search in Google Scholar

Zebida, O. A.: Aerogel Filters for Removal of Nanometric Airborne Particles, LAP Lambert Academic Publishing, (2011), ISBN-10 : 9783845441498 Search in Google Scholar

Zeng, Z., Ma, X. Y. D., Zhang, Y., Wang, Z., Ng, B. F., Wan, M. P. and Lu, X., “Robust Lignin-Based Aerogel Filters: High-Efficiency Capture of Ultrafine Airborne Particulates and the Mechanism", ACS Sustainable Chem. Eng., 7, 6959–6968 (2019), DOI:10.1021/acssuschemeng.8b06567 Search in Google Scholar

Zhai, C., Jana, S. C., “Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration", ACS Appl. Mater. Interfaces, 9, 30074–30082 (2017), DOI:10.1021/acsami.7b09345 Search in Google Scholar

Zhang, Y.-G., Zhu, Y.-J., Xiong, Z.-C., Wu, J. and Chen, F., “Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil–Water Separation", ACS Appl. Mater. Interfaces, 10, 13019–13027 (2018), DOI:10.1021/acsami.8b02081 Search in Google Scholar

Received: 2021-02-08
Accepted: 2021-03-31
Published Online: 2021-07-07
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany