Accessible Unlicensed Requires Authentication Published by De Gruyter November 16, 2021

Utilizing Pyrolytic Biomass Products for Rubber Reinforcement: Effect of the Silica Content in Biomass Feed Stocks

L.-Y. Yu, B.-C. Xue, M.-M. Qian, Y.-X. Li, Z.-X. Chen, Y.-C. Zhu and X.-F. Wang

Abstract

Biochar has been exploited as a substitution of carbon black in the rubber industry and various biochars exhibit diverse reinforcing abilities due to the different compositions. This work aims at studying the effect of silica on the modification process and reinforcing performance through the comparison of three biochars with different contents of silica, pyrolytic rice husks (PRH, 34 wt%), pyrolytic bamboos (PB, 7 wt%) and pyrolytic corn cobs (PC, 0.4 wt%). The results reveal that PRH requires higher rotational speed (300 min–1) than PB (200 min–1) and PC (200 min–1) to achieve similar particle sizes during the ball milling process because of the aggregations of higher silica content. Meanwhile, silica-rich pyrolytic biomass exhibits enhanced reinforcement on mechanical properties and thermal stability of rubber, and the elongation at break of vulcanizates continues to improve with increasing silica contents. Combined with the energy consumption and reinforcement, biochar containing a little amount of silica is more suitable to be widely used as bio-filler in rubber industry. This work should serve as a valuable reference to select appropriate biochar for the production of bio-fillers with high reinforcement.

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFF0201204.

References

Ahmed, K., Nizami, S. S. and Riza, N. Z., “Reinforcement of Natural Rubber Hybrid Composites Based on Marble Sludge/Silica and Marble Sludge/Rice Husk Derived Silica", J. Adv. Res., 5, 165–73 (2014), DOI:10.1016/j.jare.2013.01.00810.1016/j.jare.2013.01.008Search in Google Scholar

Dominic, M., Joseph, R., Sabura Begum, P. M., Kanoth, B. P., Chandra, J. and Thomas, S., “Green Tire Technology: Effect of Rice Husk Derived Nanocellulose (RHNC) in Replacing Carbon Black (CB) in Natural Rubber (NR) Compounding", Carbohydr. Polym., 230, 115620 (2020), DOI:10.1016/j.carbpol.2019.11562010.1016/j.carbpol.2019.115620Search in Google Scholar

Fan, Y., Fowler, G. D. and Norris, C., “Potential of a Pyrolytic Coconut Shell as a Sustainable Biofiller for Styrene–Butadiene Rubber", Ind. Eng. Chem. Res., 56, 4779–4791 (2017), DOI:10.1021/acs.iecr.7b0040510.1021/acs.iecr.7b00405Search in Google Scholar

Fan, Y., Fowler, G. D. and Zhao, M., “The Past, Present and Future of Carbon Black as a Rubber Reinforcing Filler – A Review", J. Cleaner Prod., 247, 119115 (2020), DOI:10.1016/j.jclepro.2019.11911510.1016/j.jclepro.2019.119115Search in Google Scholar

Gu, S., Zhou, J., Luo, Z., Wang, Q. and Ni, M., “A Detailed Study of the Effects of Pyrolysis Temperature and Feedstock Particle Size on the Preparation of Nanosilica from Rice Husk", Ind. Crop Prod., 50, 540–549 (2013), DOI:10.1016/j.indcrop. 2013.08.00410.1016/j.indcrop. 2013.08.004Search in Google Scholar

Hsieh, Y. Y., Tsai, Y. H., He, J. R., Yang, P. F., Ling, H. P., Hsu, C. H. and Loganathan, A., “Rice Husk Agricultural Waste-Derived Low Ionic Content Carbon–Silica Nanocomposite for Green Reinforced Epoxy Resin Electronic Packaging Material", J. Taiwan Inst. Chem. E., 78, 493–499 (2017), DOI:10.1016/j.jtice.2017.06.01010.1016/j.jtice.2017.06.010Search in Google Scholar

Huh, S., Batmunkh, M., Kim, Y., Chung, H., Jeong, H. and Choi, H., “The Ball Milling with Various Rotation Speeds Assisted to Dispersion of the Multi-Walled Carbon Nanotubes", Nanosci. Nanotechno. Lett., 4, 20–29 (2012), DOI:10.1166/nnl.2012.127610.1166/nnl.2012.1276Search in Google Scholar

Jeon, I. Y., Bae, S. Y., Seo, J. M. and Baek, J. B., “Scalable Production of Edge-Functionalized Graphene Nanoplatelets via Mechanochemical Ball-Milling", Adv. Funct. Mater., 25, 6961–6975 (2015), DOI:10.1002/Adfm.20150221410.1002/Adfm.201502214Search in Google Scholar

Jiang, C., Bo, J., Xiao, X., Zhang, S., Wang, Z., Yan, G., Wu, Y., Wong, C. and He, H., “Converting Waste Lignin into Nano-Biochar as a Renewable Substitute of Carbon Black for Reinforcing Styrene-Butadiene Rubber", Waste Manage., 102, 732–742 (2020), DOI:10.1016/j.wasman.2019.11.01910.1016/j.wasman.2019.11.019Search in Google Scholar

Li, M. C., Zhang, Y. and Cho, U. R., “Mechanical, Thermal and Friction Properties of Rice Bran Carbon/Nitrile Rubber Composites: Influence of Particle Size and Loading", Mater. Des., 63, 565–574 (2014), DOI:10.1016/j.matdes.2014.06.03210.1016/j.matdes.2014.06.032Search in Google Scholar

Li, Q., Li, X., Lee, D. H., Fan, Y., Nam, B. U., Lee, J. E. and Cho, U. R., “Hybrid of Bamboo Charcoal and Silica by Tetraethoxysilane Hydrolysis over Acid Catalyst Reinforced Styrene-Butadiene Rubber", J. Appl. Polym. Sci., 135, 46219 (2018), DOI:10.1002/app. 4621910.1002/app. 46219Search in Google Scholar

Li, S., Li, X., Deng, Q. and Li, D., “Three Kinds of Charcoal Powder Reinforced Ultra-High Molecular Weight Polyethylene Composites with Excellent Mechanical and Electrical Properties". Mater. Des., 85, 54–59 (2015), DOI:10.1016/j.matdes.2015.06.16310.1016/j.matdes.2015.06.163Search in Google Scholar

Li, X., Lei, B., Lin Z., Huang, L., Tan, S. and Cai, X., “The Utilization of Bamboo Charcoal Enhances Wood Plastic Composites with Excellent Mechanical and Thermal Properties", Mater. Des., 53, 419–424 (2014), DOI:10.1016/j.matdes.2013.07.02810.1016/j.matdes.2013.07.028Search in Google Scholar

Lyu, H., Gao, B., He, F., Ding, C., Tang, J. and Crittenden, J., “Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications", ACS Sustain. Chem. Eng., 5, 9568–9585 (2017), DOI:10.1021/acssuschemeng.7b0217010.1021/acssuschemeng.7b02170Search in Google Scholar

Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H. and Tang, J., “Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms", Environ. Pollut., 233, 54–63 (2018), DOI:10.1016/j.envpol.2017.10.03710.1016/j.envpol.2017.10.037Search in Google Scholar

Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y. and Yano, M., “A Silicon Transporter in Rice", Nature, 440, 688–691 (2006), DOI:10.1038/nature0459010.1038/nature04590Search in Google Scholar

Meng, X., Zhang, Y., Lu, J., Zhang, Z., Liu, L. and Chu, P. K., “Effect of Bamboo Charcoal Powder on the Curing Characteristics, Mechanical Properties, and Thermal Properties of Styrene-Butadiene Rubber with Bamboo Charcoal Powder", J. Appl. Polym. Sci., 130, 4534–4541 (2013), DOI:10.1002/app. 3952210.1002/app. 39522Search in Google Scholar

Naghdi, M., Taheran, M., Brar, S. K., Rouissi, T., Verma, M., Surampalli, R. Y. and Valero, J. R., “A Green Method for Production of Nanobiochar by Ball Milling- Optimization and Characterization", J. Cleaner Prod., 164, 1394–1405 (2017), DOI:10.1016/j.jclepro.2017.07.08410.1016/j.jclepro.2017.07.084Search in Google Scholar

Nan, N., Devallance, D. B., Xie, X. and Wang, J., “The Effect of Bio-Carbon Addition on the Electrical, Mechanical, and Thermal Properties of Polyvinyl Alcohol/Biochar Composites", J. Compos. Mater., 50, 1161–1168 (2015), DOI:10.1177/002199831558977010.1177/0021998315589770Search in Google Scholar

Niasari, M. S., Javidi, J. and Dadkhah, M., “Ball Milling Synthesis of Silica Nanoparticle from Rice Husk Ash for Drug Delivery Application", Comb. Chem. High. Throughput Screening, 16, 458–462 (2013), DOI:10.2174/138620731131606000610.2174/1386207311316060006Search in Google Scholar

Peterson, S. C., Chandrasekaran, S. R. and Sharma, B. K., “Birchwood Biochar as Partial Carbon Black Replacement in Styrene–Butadiene Rubber Composites", J. Elastom. Plast., 48, 305–316 (2015), DOI:10.1177/009524431557624110.1177/0095244315576241Search in Google Scholar

Peterson, S.C., Jackson, M. A., Kim, S. and Palmquist, D. E., “Increasing Biochar Surface Area: Optimization of Ball Milling Parameters", Powder Technol., 228, 115–120 (2012), DOI:10.1016/j.powtec.2012.05.00510.1016/j.powtec.2012.05.005Search in Google Scholar

Peterson, S. C., Kim, S., “Reducing Biochar Particle Size with Nanosilica and its Effect on Rubber Composite Reinforcement", J. Polym. Environ., 28, 317–322 (2019), DOI:10.1007/s10924-019-01604-x10.1007/s10924-019-01604-xSearch in Google Scholar

Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Zivcak, M., Ghorbanpour, M., El-Sheery, N. I. and Brestic, M., “Application of Silicon Nanoparticles in Agriculture", 3 Biotech, 9, 90 (2019), DOI:10.1007/s13205-019-1626-710.1007/s13205-019-1626-7Search in Google Scholar

Rattanasom, N., Saowapark, T. and Deeprasertkul, C., “Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler", Polym. Test., 26, 369–377 (2007), DOI:10.1016/j.polymertesting.2006.12.00310.1016/j.polymertesting.2006.12.003Search in Google Scholar

Ren, X. J., Cornish, K., “Eggshell Improves Dynamic Properties of Durable Guayule Rubber Composites Co-Reinforced with Silanized Silica", Ind. Crop Prod., 138, 111440 (2019), DOI:10.1016/j.indcrop. 2019.06.00310.1016/j.indcrop. 2019.06.003Search in Google Scholar

Ren, X. J., Sancaktar, E., “Use of Fly Ash as Eco-Friendly Filler in Synthetic Rubber for Tire Applications", J. Cleaner Prod., 206, 374–382 (2019), DOI:10.1016/j.jclepro.2018.09.20210.1016/j.jclepro.2018.09.202Search in Google Scholar

Saka, C., “BET, TG–DTG, FT-IR, SEM, Iodine Number Analysis and Preparation of Activated Carbon from Acorn Shell by Chemical Activation with ZnCl2", J. Anal. Appl. Pyrolysis., 95, 21–24 (2012), DOI:10.1016/j.jaap. 2011.12.02010.1016/j.jaap. 2011.12.020Search in Google Scholar

Strzemiecka, B., Klapiszewski, L., Jamrozik, A., Szalaty, T. J., Matykiexicz, D., Sterzynski, T., Voelkel, A. and Jesionowski, T., “Physicochemical Characterization of Functional Lignin-Silica Hybrid Fillers for Potential Application in Abrasive Tools", Materials, 9, 517 (2016), DOI:10.3390/ma907051710.3390/ma9070517Search in Google Scholar

Tangudom, P., Thongsang, S. and Sombatsompop, N., “Cure and Mechanical Properties and Abrasive Wear Behavior of Natural Rubber, Styrene–Butadiene Rubber and their Blends Reinforced with Silica Hybrid Fillers", Mater. Des., 53, 856–864 (2014), DOI:10.1016/j.matdes.2013.07.02410.1016/j.matdes.2013.07.024Search in Google Scholar

Tan, J., Cheng, H., Wei, L. and Gui, X., “Thermal and Mechanical Enhancement of Styrene–Butadiene Rubber by Filling with Modified Anthracite Coal", J. Appl. Polym. Sci., 136, 48203 (2019), DOI:10.1002/app. 4820310.1002/app. 48203Search in Google Scholar

Tan, J., Cheng, H., Wei, L., Wei, C., Xing, W. and Gui, X., “Using Low-Rank Coal Slime as an Eco-Friendly Replacement for Carbon Black Filler in Styrene Butadiene Rubber", J. Cleaner Prod., 234, 949–960 (2019), DOI:10.1016/j.jclepro.2019.06.22110.1016/j.jclepro.2019.06.221Search in Google Scholar

Van Soest, P. J., “Rice Straw, the Role of Silica and Treatments to Improve Quality", Anim. Feed Sci. Technol., 130, 137–171 (2006), DOI:10.1016/j.anifeedsci.2006.01.02310.1016/j.anifeedsci.2006.01.023Search in Google Scholar

Xue, B., Wang, X., Sui, J., Xu, D., Zhu, Y. and Liu, X., “A Facile Ball Milling Method to Produce Sustainable Pyrolytic Rice Husk Bio-Filler for Reinforcement of Rubber Mechanical Property", Ind. Crop Prod., 141,111791 (2019), DOI:10.1016/j.indcrop. 2019.11179110.1016/j.indcrop. 2019.111791Search in Google Scholar

Xue, B., Wang, X., Yu, Y., Di, B., Chen, Z., Zhu, Y. and Liu, X., “Self-Assembled Lignin-Silica Hybrid Material Derived from Rice Husks as the Sustainable Reinforcing Fillers for Natural Rubber", Int. J. Biol. Macromol., 145, 410–416 (2020), DOI:10.1016/j.ijbiomac.2019.12.18210.1016/j.ijbiomac.2019.12.182Search in Google Scholar

Zhang, Y., Ge, X., Li, M., Deng, F., Oh, J. and Cho, U. R., “The Properties of Rice Bran Carbon/Nitrile-Butadiene Rubber Composites Fabricated by Latex Compounding Method", Polym. Compos., 39, 687–696 (2018), DOI:10.1002/pc.2412610.1002/pc.24126Search in Google Scholar

Zhang, Y., Meng, X., Hu, P., Liu, L. and Chu, P., “Reutilization of Industrial Ultrafine Carbon Ash (PM2.5) as Rubber Reinforcement Filler", Environ. Prog. Sustainable Engery, 35, 1132–1138 (2016), DOI:10.1002/ep. 1232110.1002/ep. 12321Search in Google Scholar

Received: 2021-02-25
Accepted: 2021-07-01
Published Online: 2021-11-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany