Abstract
A new process to produce back-injected self-reinforced composites (SRCs) is presented. In contrast to other investigations on back-injection of SRCs, a process is presented which allows compacting and back injection of SRCs in one step where the SRCs are partly consolidated only via melt pressure inside the cavity. The mechanical properties of SRCs depend to a large extent on the process parameters of temperature and pressure during manufacture. These parameters are not yet known for back-injected areas. Sensors inside of the cavity measure the influences on the temperature and pressure conditions in the cavity. Initial studies on adhesion were carried out and analysed. For this purpose, shear tests of the back-injected component were carried out and a maximum shear strength of 5.81 MPa was determined for the materials used here. The investigations also show a dependence on the Distance from the Gate (DG) and the Mass temperature (TM). First microscopic examinations show good bonding between the SRC and the injection molded part, with no voids or air pockets in the boundary layer. It can also be seen that successful consolidation takes place in the area of the back injection.
References
Abraham, T., Banik, K. and Karger-Kocsis, J., “All-PP Composites (PUREΠ) with Unidirectional and Cross-Ply Lay-Ups: Dynamic Mechanical Thermal Analysis", eXPRESS Polym. Lett., 1, 519–526 (2007), DOI:10.3144/expresspolymlett.2007.7410.3144/expresspolymlett.2007.74Search in Google Scholar
Alcock, B., “Single Polymer Composites Based on Polypropylene: Processing and Properties", PhD Thesis, Queen Mary University, London (2004)Search in Google Scholar
Alcock, B., Cabrera, N., Barkoula, N.-M. and Peijs, T., “The Effect of Processing Conditions on the Mechanical Properties and Thermal Stability of Highly Oriented PP Tapes", Eur. Polym. J., 45, 2878–2894 (2009), DOI:10.1016/j.eurpolymj.2009.06.02510.1016/j.eurpolymj.2009.06.025Search in Google Scholar
Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Peters, G., Ries, A. and Wagner, T., “Planning and Optimisation of Manufacturing Process Chains for Functionally Graded Components – Part 2: Case Study on Self-Reinforced Thermoplastic Composites", Prod. Eng. Res. Devel., 9, 405–416 (2015), DOI:10.1007/s11740-015-0610-210.1007/s11740-015-0610-2Search in Google Scholar
Biermann, D., Maier, H. J. and Steinhoff, K., Functionally Graded Materials in Industrial Mass Production, [SFB/TR TRR 30], Verl. Wiss. Scripten, Auerbach (2009)Search in Google Scholar
Bonefeld, D., Giehl, S., Haspel, J., Jäschke, A., Lahr, R., Obermann, C., Schmeer, S., Schuck, M. and Würtele, M., “Kombination von Thermoplast-Spritzguss und Thermoformen kontinuierlich faserverstärkter Thermoplaste für Crashelemente", Proceedings Spri-Form, Karlsruhe (2011)Search in Google Scholar
Claus, J., Santos, R. A., Gorbatikh, L. and Swolfs, Y., “Effect of Matrix and Fibre Type on the Impact Resistance of Woven Composites", Composites, Part B, 183, 107736 (2020), DOI:10.1016/j.compositesb.2019.10773610.1016/j.compositesb.2019.107736Search in Google Scholar
Friedrich, H.: Leichtbau in der Fahrzeugtechnik, Springer Fachmedien Wiesbaden, Wiesbaden (2017), DOI:10.1007/978-3-658-12295-910.1007/978-3-658-12295-9Search in Google Scholar
Heim, H.-P., Biermann, D. and Homberg, W. (Eds.): Functionally Graded Materials in Industrial Mass Production, Volume 2, Verl. Wiss. Scripten, Auerbach (2013)Search in Google Scholar
Heim, H.-P., Mieth, F., Jakob, F. and Schnau, M., “Characterization of Anisotropic Properties of Hot Compacted Self-Reinforced Composites (SRCs) via Thermal Diffusivity Measurement", Int. Polym. Proc. 34, 532–540 (2019), DOI:10.3139/217.381210.3139/217.3812Search in Google Scholar
Hopmann, C., Michaeli, W.: Einführung in die Kunststoffverarbeitung, 8th Edition, Hanser, München (2017)10.3139/9783446453562Search in Google Scholar
Hwang, Y.-T., Kang, S.-Y., Kim, D.-H. and Kim, H.-S., “The Influence of Consolidation Temperature on In-Plane and Interlaminar Mechanical Properties of Self-Reinforced Polypropylene Composite", Compos. Struct., 210, 767–777 (2019), DOI:10.1016/j.compstruct.2018.11.09810.1016/j.compstruct.2018.11.098Search in Google Scholar
Jerpdal, L., Schuette, P., Ståhlberg, D. and Åkermo, M., “Influence of Temperature during Overmolding on the Tensile Modulus of Self-Reinforced Poly(ethylene terephthalate) Insert", J. Appl. Polym. Sci., 6 (2019), DOI:10.1002/app. 4833410.1002/app. 48334Search in Google Scholar
Johannaber, F., Michaeli, W.: Handbuch Spritzgießen, 2nd Edition, Hanser, München (2014)Search in Google Scholar
Kmetty, A., Bárány, T. and Karger-Kocsis, J., “Self-Reinforced Polymeric Materials: A Review", Prog. Polym. Sci., 35, 1288–1310 (2010), DOI:10.1016/j.progpolymsci.2010.07.00210.1016/j.progpolymsci.2010.07.002Search in Google Scholar
Ries, A., “Thermo-mechanische Gradierung eigenverstärkter Polypropylen-Composite", Kassel University Press, Kassel (2015)Search in Google Scholar
Rohde, B., Wibbeke, A., Heim, H.-P. and Schöppner, V., “The Manufacture of Hot-Compacted Layered Composite Systems Made of Oriented Semifinished PP-Films", ISRN Polymer Science, 2014, 1–9 (2014), DOI:10.1155/2014/60174110.1155/2014/601741Search in Google Scholar
Ronniger, C. U.: Taschenbuch der statistischen Qualitäts- und Zuverlässigkeitsmethoden. Die wichtigsten Methoden und Verfahren für die Praxis, [CRGRAPH], München (2014)Search in Google Scholar
Vazquez, Y. V., Castillo, G. and Barbosa, S. E., “Single Polymer Composite Sheets from Polypropylene Nonwoven Fabric and Films. Influence of Processing Conditions on Final Properties", Polym. Compos., 251, 1–10 (2020), DOI:10.1002/pc.2551110.1002/pc.25511Search in Google Scholar
Wang, J., Chen, D., Wang, S., Du, Z., Jiang, N. and Peng, J., “Insert Injection Molding of Low-Density Polyethylene Single-Polymer Composites Reinforced with Ultrahigh-Molecular-Weight Polyethylene Fabric", J. Thermoplast. Compos. Mater., 31, 1013–1028 (2018), DOI:10.1177/089270571773459310.1177/0892705717734593Search in Google Scholar
Wang, J., Wang, S. and Chen, D., “Development and Characterization of Insert Injection Moulded Polypropylene Single-Polymer Composites with Sandwiched Woven Fabric", Compos. Sci. Technol., 117, 18–25 (2015), DOI:10.1016/j.compscitech.2015.05.01510.1016/j.compscitech.2015.05.015Search in Google Scholar
Ward, I., Hine, P., “The Science and Technology of Hot Compaction", Polymer, 45, 1413–1427 (2004), DOI:10.1016/j.polymer.2003.11.05010.1016/j.polymer.2003.11.050Search in Google Scholar
Zimnol, R., Lutter, F., Malek, T. and Arping, T., “Chancen der Organoblech-Hybridtechnik im Leichtbau", ATZ Automobiltech Z., 114, 210–215 (2012), DOI:10.1365/s35148-012-0289-z10.1365/s35148-012-0289-zSearch in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany