Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 8, 2022

Investigation of the adhesive strength in a combined compaction and back-injection process to produce back-injected self-reinforced composites (SRCs)

Fabian Jakob, Marcel Gothe, Fabian Gansiniec and Hans-Peter Heim

Abstract

This publication investigates the adhesion between an injection molded component and a self-reinforced composite (SRC) produced in a combined compaction and back-injection process to produce back-injected self-reinforced composites. To study the influence of the process, the parameters barrel temperature, time of injection, and tool temperature were varied. In addition, samples were taken at different positions along the flow path. In light of the orthotropic material behavior of SRCs, investigations were conducted to see whether different loading cases lead to different mechanical behavior. Shear-off and pull-off tests revealed a different strength as a function of the loading type. In the shear-off tests, a mean strength of 11.37 MPa was recorded over the entire test series, while the measured mean strength in the pull-off tests is considerably lower, 4.04 MPa. The type of failure is determined with the aid of SEM images, and the influence of the microstructure of the thermoplastic fibre materials on the adhesion is set out. It is shown that, as of a sufficiently high level of adhesion, failure occurs within the fibres.


Corresponding author: Fabian Jakob, IfW Plastics Technology, University of Kassel, Mönchebergstrasse 3, 34125 Kassel, Germany E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alcock, B. (2004). Single polymer composites based on polypropylene: processing and properties, Doctoral dissertation, Queen Mary University of London, London.Search in Google Scholar

Aurrekoetxea, J., Castillo, G., Cortes, F., Sarrionandia, M.A., and Urrutibeascoa, I. (2006). Failure of multimaterial fusion bonding interface generated during over-injection molding/thermoforming hybrid process. J. Appl. Polym. Sci. 102: 261–265, https://doi.org/10.1002/app.23696.Search in Google Scholar

Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Peters, G., Ries, A., and Wagner, T. (2015). Planning and optimisation of manufacturing process chains for functionally graded components—part 2: case study on self-reinforced thermoplastic composites. Prod. Eng. Res. Devel. 9: 405–416, https://doi.org/10.1007/s11740-015-0610-2.Search in Google Scholar

Biermann, D., Gausemeier, J., Heim, H.-P., Hess, S., Petersen, M., Ries, A., and Wagner, T. (2012). Computer-aided planning and optimisation of manufacturing processes for funktional graded components. In: Heim, H.-P., Biermann, D., and Maier, H. (Eds.). 1st International conference on thermo-mechanically graded materials. Verlag Wissenschaftliche Scripten, Auerbach, pp. 195–200.Search in Google Scholar

Ehrenstein, G. (1999). Polymerwerkstoffe. Struktur, Eigenschaften, Anwendung, 2nd ed. Hanser, Munich, Vienna.Search in Google Scholar

Ehrenstein, G. (2019). Präparation. Unverstärkte, hochgefüllte und verstärkte Kunststoffe – Ätzen für Strukturuntersuchungen // Unverstärkte, hochgefüllte und verstärkte Kunststoffe – Ätzen für Strukturuntersuchungen : Erlanger Kunststoff-Schadensanalyse. Hanser, Munich.10.3139/9783446460546Search in Google Scholar

Friedrich, H. (2017). Leichtbau in der Fahrzeugtechnik. Springer Fachmedien, Wiesbaden.10.1007/978-3-658-12295-9Search in Google Scholar

Gude, M., Kupfer, R., Krahl, M., Liebsch, A., and Koshukow, W. (2017). Hybridstrukturen für die Großserie. Jahresmagazin Kunststofftechnik 80: 86.Search in Google Scholar

Heim, H.-P. (Ed.) (2016). Specialized injection molding techniques. William Andrew, Imprint of Elsevier, Oxford.Search in Google Scholar

Heim, H.-P., Biermann, D., and Homberg, W. (Eds.) (2013). Functionally graded materials in industrial mass production, Vol. 2. Verlag Wissenschaftliche Scripten, Auerbach.Search in Google Scholar

Heim, H.-P., Rohde, B., and Ries, A. (2012). Influence of the process conditions on the morphology–property–relationship of self-reinforced PP-composite. In: Heim, H.-P., Biermann, D., and Maier, H. (Eds.). 1st International conference on thermo-mechanically graded materials. Verlag Wissenschaftliche Scripten, Auerbach, pp. 247–252.Search in Google Scholar

Jakob, F., Pollmeier, J., and Heim, H.-P. (2021). Process influences in the combined compacting and back-injection process to produce back-injected self-reinforced composites (SRCs) – analysis via multiple regression modelling. Int. Polym. Proc. 36: 608–619, https://doi.org/10.1515/ipp-2020-4105.Search in Google Scholar

Jerpdal, L., Schuette, P., Ståhlberg, D., and Åkermo, M. (2020). Influence of temperature during overmolding on the tensile modulus of self‐reinforced poly(ethylene terephthalate) insert. J. Appl. Polym. Sci. 137: 48334, https://doi.org/10.1002/app.48334.Search in Google Scholar

Kmetty, A., Bárány, T., and Karger-Kocsis, J. (2010). Self-reinforced polymeric materials: a review. Prog. Polym. Sci. 35: 1288–1310, https://doi.org/10.1016/j.progpolymsci.2010.07.002.Search in Google Scholar

Paßmann, D. (2009). Prozessinduzierte Gradierung eigenverstärkter Polypropylen-Faserverbunde beim Heißkompaktieren und Umformen, PPH ZAPOL Dmochowski. Sobczyk Spółka Jawna, Szczecin.Search in Google Scholar

Ries, A. (2015). Thermo-mechanische Gradierung eigenverstärkter polypropylen-composite. Kassel University Press, Kassel.Search in Google Scholar

Ries, A. (2021). Structural description of self‐reinforced polypropylene composites. J. Appl. Polym. Sci. 138: 51215, https://doi.org/10.1002/app.51215.Search in Google Scholar

Rohde, B., Wibbeke, A., Heim, H.-P., and Schöppner, V. (2014). The manufacture of hot-compacted layered composite systems made of oriented semifinished PP-films. ISRN Polym. Sci. 2014: 1–9, https://doi.org/10.1155/2014/601741.Search in Google Scholar

Schimanski, T. (2002). High-performance polypropylene structures for eco-friendly, fully recyclable composites. Dissertation.Search in Google Scholar

Schöppner, V., Heim, H.-P., Wibbeke, A., Ries, A., and Rohde, B. (2013). Graded structures in polymers. In: Homberg, W., Biermann, D., and Heim, H.-P. (Eds.). Functionally graded Materials in industrial mass production. Fundamentals. Verlag Wissenschaftliche Scripten, Auerbach, pp. 11–42.Search in Google Scholar

Schuck, M. (2009). Kompatibilitätsprinzipien beim Montagespritzgießen. Technische Fakultät Uni Erlangen-Nürnberg, Erlangen-Nürnberg.Search in Google Scholar

Ward, I. and Hine, P. (2004). The science and technology of hot compaction. Polymer 45: 1413–1427, https://doi.org/10.1016/j.polymer.2003.11.050.Search in Google Scholar

Zimnol, R., Lutter, F., Malek, T., and Arping, T. (2012). Chancen der Organoblech-Hybridtechnik im Leichtbau. ATZ Automobiltech Z. 114: 210–215, https://doi.org/10.1365/s35148-012-0289-z.Search in Google Scholar

Received: 2021-11-13
Accepted: 2022-01-05
Published Online: 2022-03-08
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston