Abstract
O-O bond formation is one of the key reactions that ensure life on earth. Dioxygen is produced in photosystem II, as well as in chlorite dismutase. The reaction mechanisms occurring in the enzyme active sites are controversially discussed – although their structures have been resolved with less unambiguity. Artificial molecular catalysts have been developed in the last years to obtain vital insights into the O-O bond formation step. This review put together the scarce literature on the topic that helped in understanding the key steps in the O-O bond formation reactions mediated by high-valent oxo complexes of the first-row transition metals.
S.K. and K.R. gratefully acknowledge the financial support from the Cluster of Excellence ‘Unifying Concepts in Catalysis’ (EXC 314/1). M.S. thanks the DFG (SCHW 1454/41-1) for funding.
References
Baek, H. K.; Van Wart, H. E. Elementary steps in the reaction of horseradish peroxidase with several peroxides: kinetics and thermodynamics of formation of compound O and compound I. J. Am. Chem. Soc. 1992, 114, 718–725.Search in Google Scholar
Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.Search in Google Scholar
Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.Search in Google Scholar
Betley, T. A.; Surendranath, Y.; Childress, M. V.; Alliger, G. E.; Fu, R.; Cummins, C. C.; Nocera, D. G. A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites. Philos. Trans. R. Soc. B 2008, 363, 1293–1303.Search in Google Scholar
Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G. Electronic design criteria for O-O bond formation via metal-oxo complexes. Inorg. Chem. 2008, 47, 1849–1861.Search in Google Scholar
Brimblecombe, R.; Kolling, D. R. J.; Bond, A. M.; Dismukes, G. C.; Swiegers, G. F.; Spiccia, L. Sustained water oxidation by [Mn4O4]7+ core complexes inspired by oxygenic photosynthesis. Inorg. Chem. 2009, 48, 7269–7279.Search in Google Scholar
Brimblecombe, R.; Swiegers, G. F.; Dismukes, G. C.; Spiccia, L. Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew. Chem. Int. Ed. 2008, 47, 7335–7338.Search in Google Scholar
Cady, C. W.; Crabtree, R. H.; Brudvig, G. W. Functional models for the oxygen-evolving complex of photosystem II. Coord. Chem. Rev. 2008, 252, 444–455.Search in Google Scholar
Chen, H.; Tagore, R.; Olack, G.; Vrettos, J. S.; Weng, T. -C.; Penner-Hahn, J.; Crabtree, R. H.; Brudvig, G. W. Speciation of the catalytic oxygen evolution system: [MnIII/IV2(μ-O)2(terpy)2(H2O)2](NO3)3 + HSO5-. Inorg. Chem. 2007, 46, 34–43.Search in Google Scholar
Chen, Z.; Concepcion, J. J.; Hu, X.; Yang, W.; Hoertz, P. G.; Meyer, T. J. Concerted O atom-proton transfer in the O-O bond forming step in water oxidation. Proc. Natl. Acad. Sci. USA 2010, 107, 7225–7229.Search in Google Scholar
Chufan, E. E.; Puiu, S. C.; Karlin, K. D. Heme-copper/dioxygen adduct formation, properties, and reactivity. Acc. Chem. Res. 2007, 40, 563–572.Search in Google Scholar
Clausen, J.; Junge, W. Detection of an intermediate of photosynthetic water oxidation. Nature 2004, 430, 480–483.10.1038/nature02676Search in Google Scholar
Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 2004, 104, 561–588.Search in Google Scholar
Collman, J. P.; Ghosh, S. Recent applications of a synthetic model of cytochrome c oxidase: beyond functional modeling. Inorg. Chem. 2010, 49, 5798–5810.Search in Google Scholar
Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami-Iha, N. Y.; Templeton, J. L.; Meyer, T. J. Making oxygen with ruthenium complexes. Acc. Chem. Res. 2009, 42, 1954–1965.Search in Google Scholar
Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. One site is enough. catalytic water oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc. 2008, 130, 16462–16463.Search in Google Scholar
Cramer, C. J.; Smith, B. A.; Tolman, W. B. Ab initio characterization of the isomerism between the μ-η2:η2-peroxo- and bis(μ-oxo)dicopper cores. J. Am. Chem. Soc. 1996, 118, 11283–11287.Search in Google Scholar
Dau, H.; Haumann, M. The manganese complex of photosystem II in its reaction cycle – basic framework and possible realization at the atomic level. Coord. Chem. Rev. 2008, 252, 273–295.Search in Google Scholar
Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. Chem. Cat. Chem. 2010, 2, 724–761.Search in Google Scholar
Dinca, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 10337–10341.Search in Google Scholar
Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 2009, 42, 1935–1943.Search in Google Scholar
Du, P.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012–6021.Search in Google Scholar
Ellis, W. C.; McDaniel, N. D.; Bernhard, S.; Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 2010, 132, 10990–10991.Search in Google Scholar
Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed. 2008, 47, 3317–3321.Search in Google Scholar
Fillol, J. L.; Codola, Z.; Garcia-Bosch, I.; Gomez, L.; Pla, J. J.; Costas, M. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 2011, 3, 807–813.Search in Google Scholar
Furutachi, H.; Hashimoto, K.; Nagatomo, S.; Endo, T.; Fujinami, S.; Watanabe, Y.; Kitagawa, T.; Suzuki, M. Reversible O-O bond cleavage and formation of a peroxo moiety of a peroxocarbonate ligand mediated by an iron(III) complex. J. Am. Chem. Soc. 2005, 127, 4550–4551.Search in Google Scholar
Gao, Y.; Aakermark, T.; Liu, J.; Sun, L.; Åkermark, B. Nucleophilic attack of hydroxide on a MnV oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II. J. Am. Chem. Soc. 2009, 131, 8726–8727.Search in Google Scholar
Gao, Y.; Liu, J.; Wang, M.; Na, Y.; Åkermark, B.; Sun, L. Synthesis and characterization of manganese and copper corrole xanthene complexes as catalysts for water oxidation. Tetrahedron 2007, 63, 1987–1994.Search in Google Scholar
Golubkov, G.; Bendix, J.; Gray, H. B.; Mahammed, A.; Goldberg, I.; DiBilio, A. J.; Gross, Z. High-valent manganese corroles and the first perhalogenated metallocorrole catalyst. Angew. Chem. Int. Ed. 2001, 40, 2132–2134.Search in Google Scholar
Gross, Z.; Golubkov, G.; Simkhovich, L. Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole. Angew. Chem. Int. Ed. 2000, 39, 4045–4047.Search in Google Scholar
Groves, J. T. In Cytochrome P450: Structure, Mechanism, and Biochemistry. Ortiz de Montellano, P. R., Ed. Kluwer Academic/Plenum Publishers, New York, 2005, pp. 1–43.Search in Google Scholar
Groves, J. T.; Lee, J.; Marla, S. S. Detection and characterization of an oxomanganese(V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry. J. Am. Chem. Soc. 1997, 119, 6269–6273.Search in Google Scholar
Grundmeier, A.; Dau, H. Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim. Biophys. Acta 2012, 1817, 88–105.10.1016/j.bbabio.2011.07.004Search in Google Scholar
Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kanderli, S.; Young, V. G., Jr.; Que, L., Jr.; Zuberbühler, A. D.; Tolman, W. B. Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex. Science 1996, 271, 1397–1400.Search in Google Scholar
Halime, Z.; Kieber-Emmons, M. T.; Qayyum, M. F.; Mondal, B.; Gandhi, T.; Puiu, S. C.; Chufan, E. E.; Sarjeant, A. A. N.; Hodgson, K. O.; Hedman, B.; et al. Heme-copper-dioxygen complexes: toward understanding ligand-environmental effects on the coordination geometry, electronic structure, and reactivity. Inorg. Chem. 2010, 49, 3629–3645.Search in Google Scholar
Hatcher, L. Q.; Karlin, K. D. Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the Cun-O2 structure and subsequent reactivity. J. Biol. Inorg. Chem. 2004, 9, 669–683.Search in Google Scholar
Henson, M. J.; Mukherjee, P.; Root, D. E.; Stack, T. D. P.; Solomon, E. I. Spectroscopic and electronic structural studies of the Cu(III)2 bis-μ-oxo core and its relation to the side-on peroxo-bridged dimer. J. Am. Chem. Soc. 1999, 121, 10332–10345.Search in Google Scholar
Hetterscheid, D. G. H.; van der Vlugt, J. I.; de Bruin, B.; Reek, J. N. H. Water splitting by cooperative catalysis. Angew. Chem. Int. Ed. 2009, 48, 8178–8181.Search in Google Scholar
Hocking, R. K.; Brimblecombe, R.; Chang, L. -Y.; Singh, A.; Cheah, M. H.; Glover, C.; Casey, W. H.; Spiccia, L. Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 2011, 3, 461–466.Search in Google Scholar
Hohenberger, J.; Ray, K.; Meyer, K. The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat. Commun. 2012, 3, 720–732.Search in Google Scholar
Huang, Z.; Luo, Z.; Geletii, Y. V.; Vickers, J. W.; Yin, Q.; Wu, D.; Hou, Y.; Ding, Y.; Song, J.; Musaev, D. G.; et al. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 2011, 133, 2068–2071.Search in Google Scholar
Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 2009, 131, 8730–8731.Search in Google Scholar
Jin, N.; Bourassa, J. L.; Tizio, S. C.; Groves, J. T. Rapid, reversible oxygen atom transfer between an oxomanganese(V) porphyrin and bromide: a haloperoxidase mimic with enzymatic rates. Angew. Chem. Int. Ed. 2000, 39, 3849–3851.Search in Google Scholar
Jones, P.; Dunford, H. B. The mechanism of compound I formation revisited. J. Inorg. Biochem. 2005, 99, 2292–2298.Search in Google Scholar
Kanady, J. S.; Tusi, E. Y.; Day, M. W.; Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 2011, 333, 733–736.Search in Google Scholar
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2+. Science 2008, 321, 1072–1075.Search in Google Scholar
Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 109–114.10.1039/B802885KSearch in Google Scholar
Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinca, M.; Yachandra, V. K.; Nocera, D. G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ x-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692–13701.Search in Google Scholar
Kim, S. H.; Park, H.; Seo, M. S.; Kubo, M.; Ogura, T.; Klajn, J.; Gryko, D. T.; Valentine, J. S.; Nam, W. Reversible O-O bond cleavage and formation between Mn(IV)-peroxo and Mn(V)-oxo corroles. J. Am. Chem. Soc. 2010, 132, 14030–14032.Search in Google Scholar
Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science 2009, 324, 74–77.Search in Google Scholar
Kok, B.; Forbush, B.; McGloin, M. Cooperation of charges in photosynthetic oxygen evolution. I. A linear four step mechanism. Photochem. Photobiol. 1970, 11, 457–475.Search in Google Scholar
Kundu, S.; Matito, E.; Walleck, S.; Pfaff, F. F.; Heims, F.; Rabay, B.; Luis, J. M.; Company, A.; Braun, B.; Glaser, T.; et al. O-O bond formation mediated by a hexanuclear iron complex supported on a stannoxane core. Chem. -Eur. J. 2012, 18, 2787–2791.Search in Google Scholar
Kunkely, H.; Vogler, A. Water splitting by light with Osmocene as photocatalyst. Angew. Chem. Int. Ed. 2009, 48, 1685–1687.Search in Google Scholar
Kurz, P. Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays. Dalton Trans. 2009, 6103–6108.10.1039/b904532eSearch in Google Scholar
Kurz, P.; Berggren, G.; Anderlund, M. F.; Styring, S. Oxygen evolving reactions catalyzed by synthetic manganese complexes: a systematic screening. Dalton Trans. 2007, 4258–4261.10.1039/b710761gSearch in Google Scholar
Kuznetsov, A. E.; Geletii, Y. V.; Hill, C. L.; Musaev, D. G. Insights into the mechanism of O2 formation and release from the Mn4O4L6 ‘cubane’ cluster. J. Phys. Chem. A 2010, 114, 11417–11424.Search in Google Scholar
Lalrempuia, R.; McDaniel, N. D.; Mueller-Bunz, H.; Bernhard, S.; Albrecht, M. Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew. Chem. Int. Ed. 2010, 49, 9765–9768.Search in Google Scholar
Lee, A. Q.; Streit, B. R.; Zdilla, M. J.; Abu-Omar, M. M.; DuBois, J. L. Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase. Proc. Natl. Acad. Sci. USA 2008, 105, 15654–15659.Search in Google Scholar
Limberg, C. What does it really take to stabilize complexes of late transition metals with terminal oxo ligands? Angew. Chem. Int. Ed. 2009, 48, 2270–2273.Search in Google Scholar
Limburg, J.; Vrettos, J. S.; Chen, H.; de Paula, J. C.; Crabtree, R. H.; Brudvig, G. W. Characterization of the O(2)-evolving reaction catalyzed by [(terpy)(H2O)Mn(III)(O)2Mn(IV)(OH2)(terpy)](NO3)3 (terpy=2,2′:6,2″-terpyridine). J. Am. Chem. Soc. 2001, 123, 423–430.Search in Google Scholar
Limburg, J.; Vrettos, J. S.; Liable-Sands, L. M.; Rheingold, A. L.; Crabtree, R. H.; Brudvig, G. W. A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science 1999, 283, 1524–1527.Search in Google Scholar
Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 2008, 47, 1727–1752.Search in Google Scholar
Liu, H. -Y.; Lai, T. -S.; Yeung, L. -L.; Chang, C. K. First synthesis of perfluorinated corrole and its Mn=O complex. Org. Lett. 2003, 5, 617–620.Search in Google Scholar
Llobet, A.; Romain, S. Molecular catalysts for oxygen production from water. Energy Production and Storage 2010, 34–52.10.1002/0470862106.ia804Search in Google Scholar
Lomoth, R.; Huang, P.; Zheng, J.; Sun, L.; Hammarstrom, L.; Åkermark, B.; Styring, S. Synthesis and characterization of a dinuclear manganese(III,III) complex with three phenolate ligands. Eur. J. Inorg. Chem. 2002, 2965–2974.10.1002/1099-0682(200211)2002:11<2965::AID-EJIC2965>3.0.CO;2-3Search in Google Scholar
Lundberg, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. Oxyl radical required for O-O bond formation in synthetic Mn-catalyst. Inorg. Chem. 2004, 43, 264–274.Search in Google Scholar
Mandimutsira, B. S.; Ramdhanie, B.; Todd, R. C.; Wang, H.; Zareba, A. A.; Czernuszewicz, R. S.; Goldberg, D. P. A stable manganese(V)-oxo corrolazine complex. J. Am. Chem. Soc. 2002, 124, 15170–15171.Search in Google Scholar
McAlpin, J. G.; Surendranath, Y.; Dinca, M.; Stich, T. A.; Stoian, S. A.; Casey, W. H.; Nocera, D. G.; Britt, R. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 2010, 132, 6882–6883.Search in Google Scholar
McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. A CO4O4 ‘cubane’ water oxidation catalyst inspired by photosynthesis. J. Am. Chem. Soc. 2011, 133, 11446–11449.Search in Google Scholar
McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S. Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc. 2008, 130, 210–217.Search in Google Scholar
McEvoy, J. P.; Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 2006, 106, 4455–4483.Search in Google Scholar
Messinger, J.; Robblee, J. H.; Bergmann, U.; Fernandez, C.; Glatzel, P.; Visser, H.; Cinco, R. M.; McFarlane, K. L.; Bellacchio, E.; Pizarro, S. A.; et al. Absence of Mn-centered oxidation in the S2 → S3 transition: implications for the mechanism of photosynthetic water oxidation. J. Am. Chem. Soc. 2001, 123, 7804–7820.Search in Google Scholar
Meyer, T. J. Oxidizing water two ways. Nat. Chem. 2011, 3, 757–758.Search in Google Scholar
Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 2007, 46, 5284–5304.Search in Google Scholar
Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Structure and spectroscopy of copper-dioxygen complexes. Chem. Rev. 2004, 104, 1013–1045.Search in Google Scholar
Mukhopadhyay, S.; Mandal, S. K.; Bhaduri, S.; Armstrong, W. H. Manganese clusters with relevance to photosystem II. Chem. Rev. 2004, 104, 3981–4026.Search in Google Scholar
Nam, W. Dioxygen activation by metalloenzymes and models. Acc. Chem. Res. 2007, 40, 465 and the review articles in the special issue.10.1021/ar700131dSearch in Google Scholar
Naruta, Y.; Sasayama, M.; Sasaki, T. Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew. Chem. Int. Ed. 1994, 33, 1839–1841.Search in Google Scholar
Nayak, S.; Nayek, H. P.; Dehnen, S.; Powell, A. K.; Reedijk, J. Trigonal propeller-shaped [MnIII3MIINa] complexes (M=Mn, Ca): structural and functional models for the dioxygen evolving centre of PSII. Dalton Trans. 2011, 40, 2699–2702.Search in Google Scholar
Newmyer, S. L.; Ortiz de Montellano, P. R. Horseradish peroxidase His-42 → Ala, His-42 → Val, and Phe-41 → Ala mutants. Histidine catalysis and control of substrate access to the heme iron. J. Biol. Chem. 1995, 270, 19430–19438.Search in Google Scholar
Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.Search in Google Scholar
Pecoraro, V. L.; Baldwin, M. J.; Caudle, M. T.; Hsieh, W. Y.; Law, N. A. A proposal for water oxidation in photosystem II. Pure Appl. Chem. 1998, 70, 925–929.Search in Google Scholar
Pecoraro, V. L.; Hsieh, W. -Y. In search of elusive high-valent manganese species that evaluate mechanisms of photosynthetic water oxidation. Inorg. Chem. 2008, 47, 1765–1778.Search in Google Scholar
Pfaff, F. F.; Kundu, S.; Risch, M.; Pandian, S.; Heims, F.; Pryjomska-Ray, I.; Haack, P.; Metzinger, R.; Bill, E.; Dau, H.; et al. An oxocobalt(IV) complex stabilized by Lewis acid interactions with scandium(III) ions. Angew. Chem. Int. Ed. 2011, 50, 1711–1715.Search in Google Scholar
Poulsen, A. K.; Rompel, A.; McKenzie, C. J. Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II. Angew. Chem. Int. Ed. 2005, 44, 6916–6920.Search in Google Scholar
Prat, I.; Mathieson, J. S.; Guell, M.; Ribas, X.; Luis, J. M.; Cronin, L.; Costas, M. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C-H and C=C oxidation reactions. Nat. Chem. 2011, 3, 788–793.Search in Google Scholar
Privalov, T.; Sun, L.; Åkermark, B.; Liu, J.; Gao, Y.; Wang, M. A computational study of O-O bond formation catalyzed by mono- and bis-MnIV-corrole complexes. Inorg. Chem. 2007, 46, 7075–7086.Search in Google Scholar
Risch, M.; Khare, V.; Zaharieva, I.; Gerencser, L.; Chernev, P.; Dau, H. Cobalt-oxo core of a water-oxidizing catalyst film. J. Am. Chem. Soc. 2009, 131, 6936–6937.Search in Google Scholar
Risch, M.; Klingan, K.; Heidkamp, J.; Ehrenberg, D.; Chernev, P.; Zaharieva, I.; Dau, H. Nickel-oxido structure of a water-oxidizing catalyst film. Chem. Commun. 2011, 47, 11912–11914.Search in Google Scholar
Rodriguez-Lopez, J. N.; Gilabert, M. A.; Tudela, J.; Thorneley, R. N. F.; Garcia-Canovas, F. Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochem. 2000, 39, 13201–13209.Search in Google Scholar
Rodriguez-Lopez, J. N.; Lowe, D. J.; Hernandez-Ruiz, J.; Hiner, A. N.; Garcia-Canovas, F.; Thorneley, R. N. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle. J. Am. Chem. Soc. 2001, 123, 11838–11847.Search in Google Scholar
Romain, S.; Vigara, L.; Llobet, A. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 2009, 42, 1944–1953.Search in Google Scholar
Roth, J. P.; Cramer, C. J. Direct examination of H2O2 activation by a heme peroxidase. J. Am. Chem. Soc. 2008, 130, 7802–7803.Search in Google Scholar
Ruettinger, W.; Yagi, M.; Wolf, K.; Bernasek, S.; Dismukes, G. C. O2 evolution from the manganese-oxo cubane core Mn4O46+: a molecular mimic of the photosynthetic water oxidation enzyme? J. Am. Chem. Soc. 2000, 122, 10353–10357.Search in Google Scholar
Sameera, W. M. C.; Mckenzie, C. J.; McGrady, J. E. On the mechanism of water oxidation by a bimetallic manganese catalyst: a density functional study. Dalton Trans. 2011, 40, 3859–3870.Search in Google Scholar
Seidler-Egdal, R. K.; Nielsen, A.; Bond, A. D.; Bjerrum, M. J.; Mckenzie, C. J. High turnover catalysis of water oxidation by Mn(II) complexes of monoanionic pentadentate ligands. Dalton Trans. 2011, 40, 3849–3858.Search in Google Scholar
Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 2005, 105, 2279–2328.Search in Google Scholar
Shimazaki, Y.; Nagano, T.; Takesue, H.; Ye, B.; Tani, F.; Naruta, Y. Characterization of a dinuclear MnV=O complex and its efficient evolution of O2 in the presence of water. Angew. Chem. Int. Ed. 2004, 43, 98–100.Search in Google Scholar
Shintaku, M.; Matsuura, K.; Yoshioka, S.; Takahashi, S.; Ishimori, K.; Morishima, I. Absence of a detectable intermediate in the compound I formation of horseradish peroxidase at ambient temperature. J. Biol. Chem. 2005, 280, 40934–40938.Search in Google Scholar
Siegbahn, P. E. M. O-O bond formation in the S4 state of the oxygen-evolving complex in photosystem II. Chem.-Eur. J. 2006, 12, 9217–9227.Search in Google Scholar
Siegbahn, P. E. M. Theoretical studies of O−O bond formation in photosystem II. Inorg. Chem. 2008a, 47, 1779–1786.Search in Google Scholar
Siegbahn, P. E. M. Mechanism and energy diagram for O-O bond formation in the oxygen-evolving complex in photosystem II. Philos. Trans. R. Soc. B 2008b, 363, 1221–1228.10.1098/rstb.2007.2218Search in Google Scholar
Siegbahn, P. E. M. A structure-consistent mechanism for dioxygen formation in photosystem II. Chem.-Eur. J. 2008c, 14, 8290–8302.Search in Google Scholar
Siegbahn, P. E. M. Structures and energetics for O2 formation in photosystem II. Acc. Chem. Res. 2009a, 42, 1871–1880.Search in Google Scholar
Siegbahn, P. E. M. Water oxidation in photosystem II: oxygen release, proton release and the effect of chloride. Dalton Trans. 2009, 10063–10068.10.1039/b909470aSearch in Google Scholar
Siegbahn, P. E. M. Recent theoretical studies of water oxidation in photosystem II. Photochem. Photobio. B. 2011a, 104, 94–99.Search in Google Scholar
Siegbahn, P. E. M. The effect of backbone constraints: the case of water oxidation by the oxygen-evolving complex in PSII. Chem. Phys. Chem. 2011b, 12, 3274–3280.Search in Google Scholar
Siegbahn, P. E. M.; Lundberg, M. The mechanism for dioxygen formation in PSII studied by quantum chemical methods. Photochem. Photobiol. Sci. 2005, 4, 1035–1043.Search in Google Scholar
Sproviero, E. M.; Gason, J. A.; McEvog, J. P.; Brudvig, G. W.; Batisda, V. S. Quantum mechanics/molecular mechanics Study of the catalytic cycle of water splitting in photosystem II. J. Am. Chem. Soc. 2008, 130, 3428–3442.Search in Google Scholar
Spuhler, P.; Holthausen, M. C. Mechanism of the aliphatic hydroxylation mediated by a bis(μ-oxo)dicopper(III) complex. Angew. Chem. Int. Ed. 2003, 42, 5961–5965.Search in Google Scholar
Stracke, J. J.; Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [CO4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. J. Am. Chem. Soc. 2011, 133, 14872–14875.Search in Google Scholar
Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.Search in Google Scholar
Surendranath Y.; Lutterman, D. A.; Liu, Y.; Nocera, D. G. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst. J. Am. Chem. Soc. 2012, 134, 6326–6336.Search in Google Scholar
Tagore, R.; Crabtree, R. H.; Brudvig, G. W. Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg. Chem. 2008, 47, 1815–1823.Search in Google Scholar
Tolman, W. B. Making and breaking the dioxygen O-O bond: new insights from studies of synthetic copper complexes. Acc. Chem. Res. 1997, 30, 227–237.Search in Google Scholar
Tong, L.; Duan, L.; Xu, Y.; Privalov, T.; Sun, L. Structural modifications of mononuclear ruthenium complexes: a combined experimental and theoretical study on the kinetics of ruthenium-catalyzed water oxidation. Angew. Chem. Int. Ed. 2011, 50, 445–449.Search in Google Scholar
Umena, Y.; Kawakami, K.; Shen, J. -R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–60.Search in Google Scholar
Vilella, L.; Vidossich, P.; Balcells, D.; Lledos, A. Basic ancillary ligands promote O-O bond formation in iridium-catalyzed water oxidation: a DFT study. Dalton Trans. 2011, 40, 11241–11247.Search in Google Scholar
Vrettos, J. S.; Limburg, J.; Brudvig, G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta 2001, 1503, 229–245.Search in Google Scholar
Wasylenko, D. J.; Ganesamoorthy, C.; Borau-Garcia, J.; Berlinguette, C. P. Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem. Commun. 2011, 47, 4249–4251.Search in Google Scholar
Wasylenko, D. J.; Henderson, M. A.; Ganesamoorthy, C.; Koivisto, B. D.; Osthoff, H. G.; Berlinguette, C. P. Electronic modification of the [RuII(tpy)(bpy)(OH2)]2+ scaffold: effects on catalytic water oxidation. J. Am. Chem. Soc. 2010, 132, 16094–16106.Search in Google Scholar
Wasylenko, D. J.; Palmer, R. D.; Schott, E.; Berlinguette, C. P. Interrogation of electrocatalytic water oxidation mediated by a cobalt complex. Chem. Commun. 2012, 48, 2107–2109.Search in Google Scholar
Wertz, D. L.; Valentine, J. S. Nucleophilicity of iron-peroxo porphyrin complexes. Struct. Bonding (Berlin) 2000, 97, 37–60.Search in Google Scholar
Wiechen, M.; Berends, H. -M.; Kurz, P. Water oxidation catalysed by manganese compounds: from complexes to ‘biomimetic rocks’ . Dalton Trans. 2012, 41, 21–31.Search in Google Scholar
Yano, J.; Yachandra, V. K. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from x-ray spectroscopy. Inorg. Chem. 2008, 47, 1711–1726.Search in Google Scholar
Ye, S.; Neese, F. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state. Proc. Natl. Acad. Sci. USA 2011, 108, 1228–1233.10.1073/pnas.1008411108Search in Google Scholar PubMed PubMed Central
Yin, Q.; Tan, J. M.; Besson, C.; Geletti, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.Search in Google Scholar
Yocum, C. F. The calcium and chloride requirements of the O2 evolving complex. Coord. Chem. Rev. 2008, 252, 296–305.Search in Google Scholar
Zdilla, M. J.; Lee, A. Q.; Abu-Omar, M. M. Bioinspired dismutation of chlorite to dioxygen and chloride catalyzed by a water-soluble iron porphyrin. Angew. Chem. Int. Ed. 2008, 47, 7697–7700Search in Google Scholar
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston