Abstract
Current trends in the structure of hog production in the U.S. are toward facilities that are not only larger, but also more likely to be specialized, carrying out only some of the vertically linked phases of production in the same facility. This paper investigates the cost efficiency incentives for these changes by estimating a multistage cost function for hog production. Data are from the Hog Production Practices and Costs portion of the USDA’s 2004 Agricultural Resource Management Survey.
Notes
This project received financial support from the National Research Initiative Competitive Grants Program (Markets and Trade area), CSREES/USDA, proposal No. 2007-04495. The opinions expressed herein are those of the authors and do not necessarily reflect the views of CSREES or USDA. The authors gratefully acknowledge helpful communications with Robert Dubman, Nigel Key, and William McBride.
Funding statement: National Research Initiative Competitive Grants Program (Markets and Trade area), CSREES/USDA., (Grant / Award Number: ‘2007-04495’).
Appendix: The Measurement of Stage-Specific Output
The stage one and stage two output measures used in the multistage cost function are hundred weight gain in the farrow-to-feeder (
Output Measure: Stage 2
where
Beginning-of-year and end-of-year head count inventories were reported separately in the survey for four size categories: 0–59 pounds, 60–119 pounds, 120–179 pounds, and 180 pounds and over. Hogs in the last three categories, and some of the hogs in the first category, are attributed to the feeder-to-finish stage. As the average weight of feeder pigs observed is less than 60 pounds, the inventory of hogs in the 0–59 pound category must be allocated between the farrow-to-feeder and feeder-to-finish stages. The allocation was based on the assumption that the pigs in this size category were uniformly distributed over weights of 0 to 60 pounds. This also implies that the average weight of the pigs in excess of 47 pounds is the average of 47 and 60, the category’s upper bound weight. Thus the hundred weight change in feeder-to-finish inventory of pigs weighing 47 to 60 pounds (
where
The representative weights of the other three categories, 100 pounds, 150 pounds, and 200 pounds, are the category weights implicit in the ERS/NASS calculations of the hundred-weight inventory variables from the reported head-count inventories. Thus, the hundred weight inventory changes in the remaining categories are constructed as:
where the new notation is defined in the obvious way. Summing these, we have the hundred weight change in feeder-to-finish inventory
Since both head of market hogs sold/removed (
Finally, the stage two output is
Output Measure: Stage 1
At the first stage, no output is produced by completely specialized feeder-to-finish operations. Since there is no intermediate input required for the farrow-to-feeder stage, the process of calculating hundred-weight gain is divided into only two parts: feeder pigs exiting the stage and change in inventory.
As previously mentioned, the survey reports head counts of pigs under 60 pounds in beginning-of-year (
and
Assuming the average weight of feeder pigs in these beginning and ending inventories is half the average feeder pig weight, the hundred weight change in the pig inventory is
The outflow of feeder pigs from the first stage to the second (
where
From this, stage one output is given by
Death Loss Allocation
To determine the head count flows we require a measure of death loss at the feeder-to-finish stage. However, death losses were instead reported for pre-wean and post-wean periods – with weaning, of course, occurring during the farrow-to-feeder stage – so an allocation of the reported post-wean death losses (
Completely specialized farrow-to-feeder farms have no second stage production so no death loss is allocated to the feeder-to-finish stage. Similarly, completely specialized feeder-to-finish farms operate exclusively on the second stage so all post-wean death loss is allocated to the feeder-to-finish stage. Since fully-integrated feeder-to-finish, partially-integrated backward, and partially-integrated forward firms operate on both stages, a portion of post-wean death loss is allocated to each stage. For these farms, farm-specific death loss at the feeder-to-finish stage (
References
Azzam, A., and C.S. Skinner. 2007. “Vertical Economies and the Structure of U.S. Hog Farms.” Canadian Journal of Agricultural Economics 55:349–364.10.1111/j.1744-7976.2007.00096.xSearch in Google Scholar
Bailey, E.E., and A.F. Friedlaender. 1982. “Market Structure and Multiproduct Industries.” Journal of Economic Literature 20:1024–1048.Search in Google Scholar
Baumol, W.J. 1977. “On the Proper Cost Tests for Natural Monopoly in a Multiproduct Industry.” American Economic Review 67 (5):809–822.Search in Google Scholar
Carrington, W.J., J.L. Eltinge, and K. McCue. 2000. An Economist’s Primer on Survey Samples. Discussion Paper CES 00-15, Center for Economic Studies, Bureau of the Census.Search in Google Scholar
Dubman, R.W. 2001. Variance Estimation with USDA’s Farm Costs and Returns Surveys and Agricultural Resource Management Study Surveys. ERS Staff Paper AGES 00-01. USDA-ERS.Search in Google Scholar
DuMouchel, W.H., and G.J. Duncan. 1983. “Using Sample Survey Weights in Multiple Regression Analyses of Stratified Samples.” Journal of the American Statistical Association 78 (383):535–543.10.1080/01621459.1983.10478006Search in Google Scholar
Kaserman, D.L., and J.W. Mayo. 1991. “The Measurement of Vertical Economies and the Efficient Structure of the Electric Utility Industry.” Journal of Industrial Economics 39 (5):483–502.10.2307/2098457Search in Google Scholar
Key, N., and W. McBride. 2007. The Changing Economics of U.S. Hog Production. Economic Research Report No. 52. USDA-ERS.10.2139/ssrn.1084881Search in Google Scholar
Kott, P.S. 2001. Using the Delete-a-Group Jackknife Variance Estimator in Nass Surveys. NASS Research Report 98-01 (revised 2001). Available at: http://www.nass.usda.gov/research/reports/RRGJ7.pdfSearch in Google Scholar
Kott, P.S. 2008. Building a Better Delete-A-Group Jackknife for a Calibration Estimator (Like that Based on Data from the ARMS III). Extension of paper presented at the Workshop on Calibration and Estimation in Surveys, Ottawa, Ontario, October/November 2007.Search in Google Scholar
Kwoka, J.E. 2002. “Vertical Economies in Electric Power: Evidence on Integration and Its Alternatives.” International Journal of Industrial Organization 20:653–671.10.1016/S0167-7187(00)00114-4Search in Google Scholar
Little, R.J. 2004. “To Model or Not to Model? Competing Modes of Inference for Finite Population Sampling.” Journal of the American Statistical Association 99:546–556.10.1198/016214504000000467Search in Google Scholar
MacDonald, J., J. Perry, M. Ahearn, D. Banker, W. Chambers, C. Dimitri, N. Key, K. Nelson, and L. Southard. 2004. Contracts, Markets, and Prices: Organizing the Production and Use of Agricultural Commodities. Agricultural Economics Report No. 837. USDA-ERS.10.2139/ssrn.754986Search in Google Scholar
Mayen, C.D., J.V. Balagtas, and C.E. Alexander. 2009. “Vertical Economies of Scope in Dairy Farming.” Journal of Agricultural and Food Industrial Organization 7:article 8.10.2202/1542-0485.1281Search in Google Scholar
National Research Council. 2007. “Methods for Analysis of Complex Surveys. Chapter 7.” In Understanding American Agriculture: Challenges for the Agricultural Resource Management Survey. Washington, DC: National Academy of Sciences. Available at http://www.nap.edu/catalog/11990.html.Search in Google Scholar
Panzar, J.C., and R.D. Willig. 1975. Economies of Scale and Economies of Scope in Multi-Output Production. Economics Discussion Paper 33. Bell Labs.Search in Google Scholar
Panzar, J.C., and R.D. Willig. 1977. “Economies of Scale in Multi-Output Production.” Quarterly Journal of Economics 91 (3):431–493.10.2307/1885979Search in Google Scholar
Panzar, J.C., and R.D. Willig. 1981. “Economies of Scope.” American Economic Review 71 (2):268–272.Search in Google Scholar
U. S. Department of Agriculture, Economic Research Service. 2009. ARMS Global Documentation. Available at: http://www.ers.usda.gov/Data/ARMS/GlobalDocumentation.htmSearch in Google Scholar
Wooldridge, J.M. 1999. “Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples.” Econometrica 67 (6):1385–1406.10.1111/1468-0262.00083Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston