Abstract
Gyro theodolites – briefly gyros – allow the orientation transfer from a reference line to another line without need for a connecting geodetic network. They are routinely used for orientation control of networks in tunnelling projects. This is currently the only way to stabilize accuracy and reliability in tunnelling networks and is indispensable with respect of today’s requirements for excavation and breakthrough accuracy. In order to archive a reliable assessment of correctness, the measuring method has to be planned in a way that systematic influences in the determination of an underground directional angle are minimized. For this purpose, the principle of differential measurements is used for an azimuth determination both in terms of time as well as in space. All required corrections and reductions must be considered correctly to obtain the directional angle of interest with a measurement uncertainty less than 1 mgon (
References
[1] Benning, W.: Statistik in Geodäsie, Geoinformation und Bauwesen Wichmann publishing company, Heidelberg. ISBN 3-87907-383-X, 2002.Search in Google Scholar
[2] DIN 18723-7: Feldverfahren zur Genauigkeitsuntersuchung geodätischer Instrumente – Vermessungskreisel. Beuth publishing company, Berlin, 1990.Search in Google Scholar
[3] DMT (Ed.): Operator’s guide Gyromat 2000, March 2004.Search in Google Scholar
[4] DMT (Ed.): User manual Gyromat 5000, August 2014.Search in Google Scholar
[5] DMT (Ed.): Bedienungsanleitung Gyromat 2000, 1990.Search in Google Scholar
[6] Grillmayer, E.: Untersuchungen systematischer Fehlereinflüsse bei Messungen mit dem Kreisel DMT Gyromat 2000. Shaker publishing company, Aachen. ISBN 3-8322-1588-3, 2003.Search in Google Scholar
[7] GUM: Evaluation of measurement data – Guide to the expression of uncertainty in measurements. BIPM (Ed.): JCGM 100, 2008.Search in Google Scholar
[8] Großmann, W.: Geodätische Rechnungen und Abbildungen in der Landesvermessung. Wittwer publishing company, Stuttgart, 3 Edition, 1976.Search in Google Scholar
[9] Gruber, F. J., Joeckel, R.: Formelsammlung für das Vermessungswesen. Teubner publishing company, Stuttgart, 13 Edition. ISBN 978-3-8351-0119-0, 2007.Search in Google Scholar
[10] Heister, H.: Planning gyro measurements with particular reference to systematic error sources. South African Journal of Surveying and Mapping. Vol. 22 Part 4, (1994).Search in Google Scholar
[11] Heister, H.: Experimentelle Untersuchungen zur Horizontalrefraktion im Tunnelbau. IX. Int. Geodätische Woche Obergurgl. Institutsmitteilungen Institut für Geodäsie der Universität Innsbruck, Issue 17, pp. 79–91, 1997.Search in Google Scholar
[12] Heister, H.: Zur Messunsicherheit im Vermessungswesen (I) und (II). Geomatik Schweiz, Issue 11, pp. 604–607; Issue 12, pp. 670–673, 2005.Search in Google Scholar
[13] Heister, H., Liebl, W.: Zur Messunsicherheit von Kreiselmessungen im Gotthard-Basistunnel. Geomatik Schweiz, Issue 12, pp. 586–593, 2010.Search in Google Scholar
[14] Heunecke, O., Kuhlmann, H., Welsch, W., Eichhorn, A., Neuner, H.: Handbuch Ingenieurgeodäsie, Auswertung geodätischer Überwachungsmessungen. 2. Neu bearbeitete und erweiterte Auflage, Wichmann publishing company, Heidelberg. ISBN 978-3-87907-467-9, 2013.Search in Google Scholar
[15] Heunecke, O., Linkwitz, K., Schwarz, W.: Geodätische Überwachung von geotechnischen Bauwerken. Grundbautaschenbuch. 7 Edition, Ernst & Sohn publishing company, Berlin. ISBN 978-3-433-01843-9, pp. 559–652, 2008.10.1002/9783433600221.ch10Search in Google Scholar
[16] Schödlbauer, A.: Funktionsprinzipien automatisierter Vermessungskreisel. In: Schriftenreihe Studiengang Vermessungswesen der Universität der Bundeswehr München, Issue 38-2: Moderne Verfahren der Landesvermessung, pp. 443–469, 1990.Search in Google Scholar
[17] Schödlbauer, A.: Rechenformeln und Rechenbeispiel zur Landesvermessung. Teil 3: Punkteigenschaften im System der Gaussschen und der geographischen Koordinaten. Wichmann-Verlag, Karlsruhe, ISBN 3-87907-12-5, 1984.Search in Google Scholar
[18] Torge, W.: Geodesy. De Gruyter publishing company, Berlin. ISBN 3-11-007232-7, 1991.10.1515/9783111542683Search in Google Scholar
[19] Zanini, M.: Hochpräzise Azimutbestimmung mit Vermessungskreiseln. ETH Zurich, Report No. 209, 1992.Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston