Accessible Requires Authentication Published by De Gruyter July 31, 2018

Immune response and inflammatory pathway of ulcerative colitis

Nitima Tatiya-aphiradee, Waranya Chatuphonprasert and Kanokwan Jarukamjorn


Ulcerative colitis (UC) is an idiopathic relapsing inflammatory disease. Although the etiology of UC remains unclear, it could be characterized by inflammation of the intestinal mucosa, starting from the rectum and potentially involving the entire colon. The immune response and inflammatory pathway of UC have shown that tissue damage is driven by dynamic and complexes of cells and cytokines. Various types of cells, including antigen-presenting cells (dendritic cells and macrophages), T helper cells, regulatory T cells, and natural killer T cells, play a crucial role in UC pathogenesis by regulation, suppression, and maintenance of inflammation. Moreover, cytokine networks become an important part due to their signaling function, which is indispensable for cell communication. Pro-inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1, IL-6, IL-9, IL-13, and IL-33] play significant roles in upregulation, while anti-inflammatory cytokines (transforming growth factor-β, IL-10, and IL-37) play significant roles in downregulation of disease progression. The pathogenesis of UC consists of immuno-inflammatory pathways related to the multiple components of the intestine, including the epithelial barrier, commensal microflora, antigen recognition, dysregulation of immunological responses, leukocyte recruitment, and genetic factors. The understanding of immuno-inflammatory pathways of UC might lead to the development of a specific therapy and/or a novel treatment that could be more efficient.

Corresponding author: Assoc. Prof. Kanokwan Jarukamjorn, PhD, Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Mitraparb Road, Khon Kaen 40002, Thailand, Phone/Fax: 043-202379

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


1. Head KA, Jurenka JS. Inflammatory bowel disease part I: ulcerative colitis-pathophysiology and conventional and alternative treatment options. Alter Med Rev 2003;8:247–83. Search in Google Scholar

2. Kaplan GG, Ng SC. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 2017;152:313–21.10.1053/j.gastro.2016.10.02027793607 Search in Google Scholar

3. Shouval DS, Rufo PA. The role of environmental factors in the pathogenesis of inflammatory bowel disease: a review. JAMA Pediatr 2017;171:999–1005.2884676010.1001/jamapediatrics.2017.2571 Search in Google Scholar

4. Ahmad T, Satsangi J, McGovern D, Bunce M, Jewell DP. The genetics of inflammatory bowel disease. Aliment Pharmacol Ther 2011;15:731–48. Search in Google Scholar

5. Zhang SZ, Zhao XH, Zhang DC. Cellular and molecular immunopathogenesis of ulcerative colitis. Cell Mol Immunol 2006;3:35–40.16549047 Search in Google Scholar

6. Moldoveanu AC, Diculescu M, Braticevici CF. Cytokines in inflammatory bowel disease. Rom J Intern Med 2015;53:118–27.26402980 Search in Google Scholar

7. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med 2011;365:1713–25.2204756210.1056/NEJMra1102942 Search in Google Scholar

8. Kmiec Z, Cyman M, Slenioda TJ. Cell of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv Med Sci 2017;62:1–16.2812669710.1016/j.advms.2016.09.001 Search in Google Scholar

9. Flannigan KL, Geem D, Harusato A, Denning TL. Intestinal antigen-presenting cells: key regulators of immune homeostasis and inflammation. Am J Pathol 2015;185:1809–19.10.1016/j.ajpath.2015.02.02425976247 Search in Google Scholar

10. Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K, Arai K, et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol 2005;175:6900–8.10.4049/jimmunol.175.10.690016272349 Search in Google Scholar

11. Sanchez-Muñoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroentrol 2008;14:4280–8.10.3748/wjg.14.4280 Search in Google Scholar

12. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011;140:1756–67.10.1053/j.gastro.2011.02.01621530742 Search in Google Scholar

13. Osawa Y, Banno Y, Nagaki M, Brenner DA, Naiki T, Nozawa Y, et al. TNF-α-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol 2001;167:173–80.10.4049/jimmunol.167.1.17311418646 Search in Google Scholar

14. Begue B, Wajant H, Bambou JC, Dubuquoy L, Siegmund D, Beaulieu JF, et al. Implication of TNF-related apoptosis-inducing ligand in inflammatory intestinal epithelial lesions. Gastroenterology 2006;130:1962–74.1676261910.1053/j.gastro.2006.03.022 Search in Google Scholar

15. Bosani M, Ardizzone S, Porro GB. Biologic targeting in the treatment of inflammatory bowel diseases. Biologics 2009;3:77–97.19707398 Search in Google Scholar

16. Pedersen J, Coskun M, Soendergaard C, Salem M, Nielsen OH. Inflammatory pathways of importance for management of inflammatory bowel disease. World J Gastroenterol 2014;20:64–77.10.3748/wjg.v20.i1.6424415859 Search in Google Scholar

17. Ashwood P, Harvey R, Verjee T, Wolstencroft R, Thompson RP, Powell JJ. Functional interactions between mucosal IL-1, IL-Ra and TGF-β1 in ulcerative colitis. Inflamm Res 2004;53:53–9.15021969 Search in Google Scholar

18. McAlindon ME, Hawkey CJ, Mahida YR. Expression of interleukin-1β and interleukin-1β converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut 1998;42:214–9.10.1136/gut.42.2.214 Search in Google Scholar

19. Reimund JM, Wittersheim C, Dumont S, Muller CD, Baumann R, Poindron P, et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease. J Clin Immunol 1996;16:144–50.873435710.1007/BF01540912 Search in Google Scholar

20. Mitsuyama K, Toyonaga A, Sasaki E, Ishida O, Ikeda H, Tsuruta O, et al. Soluble interleukin-6 receptors in inflammatory bowel disease relation to circulating interleukin-6. Gut 1995;36:45–9.10.1136/gut.36.1.457890234 Search in Google Scholar

21. Mudter J, Neurath MF. Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut 2007;56:293–303.10.1136/gut.2005.09046416956919 Search in Google Scholar

22. Uguccioni M, Gionchetti P, Robbiani DF, Rizzello F, Peruzzo S, Campieri M, et al. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 1999;155:331–6.10.1016/S0002-9440(10)65128-010433925 Search in Google Scholar

23. Grimm MC, Elsbury SK, Pavli P, Doe WF. Interleukin 8: cells of origin in inflammatory bowel disease. Gut 1996;38:90–8.10.1136/gut.38.1.908566866 Search in Google Scholar

24. Muthas D, Reznichenko A, Balendran CA, Bottcher G, Clausen IG, Karrman M, et al. Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications. Scand J Gastroenterol 2017;52:125–35.10.1080/00365521.2016.123522427610713 Search in Google Scholar

25. Gerlach K, Hwang Y, Nikolaev A, Artreya R, Dornhoff H, Steiner S, et al. Th9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 2014;15:676–86.10.1038/ni.2920 Search in Google Scholar

26. Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT, Atreya R, et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 2015;64:743–55.2495726510.1136/gutjnl-2013-305947 Search in Google Scholar

27. Papay P, Ignjatovic A, Karmiris K, Amarante H, Milheller P, Feagan B, et al. Optimising monitoring in the management of Crohn’s disease: a physician’s perspective. J Crohns Colitis 2013;7:653–69.10.1016/j.crohns.2013.02.00523562672 Search in Google Scholar

28. Luettig J, Rosenthal R, Barmeyer C, Schulzke JD. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 2015;3:e977176. doi: 10.4161/21688370.2014.977176.2583898210.4161/21688370.2014.977176 Search in Google Scholar

29. Defendenti C, Sarzi-Puttini P, Saibeni S, Bollani S, Bruno S, Almasio PL, et al. Significance of serum IL-9 in inflammatory bowel disease. Int J Immunopathol Pharmacol 2015;28:569–75.10.1177/039463201560053526377844 Search in Google Scholar

30. Rennick DM, Fort MM. Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10−/−) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2000;278:G829–33.10.1152/ajpgi.2000.278.6.G829 Search in Google Scholar

31. Melgar S, Yeung MW, Bas A, Forsberg G, Suhr O, Oberg A, et al. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin Exp Immunol 2003;134:127–37.1297476510.1046/j.1365-2249.2003.02268.x Search in Google Scholar

32. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 2009;361:2033–45.1989011110.1056/NEJMoa0907206 Search in Google Scholar

33. Azizi G, Pouvani MR, Abolhassani H, Sharifi L, Dizaii MZ, Mohammadi J, et al. Cellular and molecular mechanisms of immune dysregulation and autoimmunity. Cell Immunol 2016;310:14–26.10.1016/j.cellimm.2016.08.01227614846 Search in Google Scholar

34. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002;17:629–38.1243336910.1016/S1074-7613(02)00453-3 Search in Google Scholar

35. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005;129:550–64.10.1016/j.gastro.2005.05.00216083712 Search in Google Scholar

36. Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine 2017;100:1–10.2868737310.1016/j.cyto.2017.06.017 Search in Google Scholar

37. Seidelin JB, Bjerrum JT, Coskun M, Widjaya B, Vainer B, Nielsen OH. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett 2010;128:80–5.10.1016/j.imlet.2009.11.00119913053 Search in Google Scholar

38. Gunderson MD, Goll R, Hol J, Olsen T, Rismo R, Sorbye SW, et al. Loss of interleukin-33 expression in colonic crypts – a potential marker for disease remission in ulcerative colitis. Sci Rep 2016;6:35403.10.1038/srep3540327748438 Search in Google Scholar

39. Boraschi D, Lucchesi D, Hainzl S, Leitner M, Maier E, Mangelberger D, et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw 2011;22:127–47.22047735 Search in Google Scholar

40. Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Ban H, Bamba S, et al. Epithelial expression of interleukin-37b in inflammatory bowel disease. Clin Exp Immunol 2013;172:410–6.2360082910.1111/cei.12061 Search in Google Scholar

41. Li Y, Wang Y, Liu Y, Wang Y, Zuo X, Li Y, et al. The possible role of the novel cytokines IL-35 and IL-37 in inflammatory bowel disease. Mediators Inflamm 2014;2014:136329. doi: 10.1155/2014/136329.25214710 Search in Google Scholar

42. Lawrance IC, Maxwell L, Doe W. Inflammation location, but not type, determines the increase in TGF-β1 and IGF-1 expression and collagen deposition in IBD intestine. Inflamm Bowel Dis 2001;7:16–26.10.1097/00054725-200102000-0000311233656 Search in Google Scholar

43. Del Zotto B, Mumolo G, Pronio A, Montesani C, Tersigni R, Boirivant M. TGF-β1 production in inflammatory bowel disease: differing production patterns in Crohn’s disease and ulcerative colitis. Clin Exp Immunol 2003;134:120–6.1297476410.1046/j.1365-2249.2003.02250.x Search in Google Scholar

44. Johansson ME, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nature 2013;10:352–61. Search in Google Scholar

45. Ordás I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet 2012;380:1606–19.2291429610.1016/S0140-6736(12)60150-0 Search in Google Scholar

46. Abraham C, Dulai PS, Vermeire S, Sandborn WJ. Lessons learned from trials targeting cytokine pathways in patients with inflammatory bowel diseases. Gastroenterology 2017;152:374–88.10.1053/j.gastro.2016.10.01827780712 Search in Google Scholar

47. Hufford MM, Kaplan M. A gut reaction to IL-9. Nat Immunol 2014;15:599–600.2494094710.1038/ni.2916 Search in Google Scholar

48. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 2005;129:50–65.1601293410.1053/j.gastro.2005.05.013 Search in Google Scholar

49. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307:254–8.10.1126/science.110290115653504 Search in Google Scholar

50. Rahman A, Fahlgren A, Sitohy B, Baranov V, Zirakzadeh A, Hammarström S, et al. β-Defensin production by human colonic plasma cells: a new look at plasma cells in ulcerative colitis. Inflamm Bowel Dis 2007;13:847–55.10.1002/ibd.20141 Search in Google Scholar

51. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2011;17:179–84.10.1002/ibd.2133920839241 Search in Google Scholar

52. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68: 7010–7.1108382610.1128/IAI.68.12.7010-7017.2000 Search in Google Scholar

53. Shen X, Shi R, Zhang H, Li K, Zhao Y, Zhang R. The Toll-like receptor 4 D299G and T399I polymorphisms are associated with Crohn’s disease and ulcerative colitis: a meta-analysis. Digestion 2010;81:69–77.10.1159/00026041720093834 Search in Google Scholar

54. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 2004;113:1490–7.10.1172/JCI19836 Search in Google Scholar

55. Matsuda R, Koide T, Tokoro C, Yamamoto T, Godai TI, Morohashi T, et al. Quantitative cytokine mRNA expression profiles in the colonic mucosa of patients with steroid naive ulcerative colitis during active and quiescent disease. Inflamm Bowel Dis 2009;15:328–34.10.1002/ibd.2075918942752 Search in Google Scholar

56. Granger DN. Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 1998;114:1066–90.10.1016/S0016-5085(98)70328-29558298 Search in Google Scholar

57. Bouma G, Crusius JB, García-González MA, Meijer BU, Hellemans HP, Hakvoort RJ, et al. Genetic markers in clinically well-defined patients with ulcerative colitis (UC). Clin Exp Immunol 1999;115:294–300.993345610.1046/j.1365-2249.1999.00797.x Search in Google Scholar

58. UK IBD Genetics Consortium, Barrett JC, Lee JC, Lees CW, Prescott NJ, Anderson CA, et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 2009;41:1330–4.10.1038/ng.48319915572 Search in Google Scholar

Received: 2018-02-21
Accepted: 2018-06-01
Published Online: 2018-07-31
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston