Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 27, 2020

Chemical compounds, antioxidant activity, and in vitro and in silico litholytic effects of Zizyphus lotus extracts

  • Khouchlaa Aya EMAIL logo and Tijane M’hamed



The aim of this study was to evaluate the antioxidant activity and to determine the chemical compounds of organic extracts of fruits and leaves of Zizyphus lotus. The litholytic effect was determined on the basis of the in vitro effect of the aqueous extracts on the formation of crystals of stones. Finally, chemical compounds were investigated to identify their target using an in silico approach.


The antioxidant activity was determined with the diphenylpicrylhydrazyl radical trapping method. An aliquot of 2 mL of urine and 100 μL of an infusion of fruit and leaf aqueous extract of Z. lotus at different concentrations were used. The induction of calcium oxalate (CaOx) crystals was done by the addition of oxalic acid at 0.1 mol/L. The effect of aqueous extracts was compared with two inhibitors (citrate and magnesium) used as references. In silico modelization was carried out using SwissTargetPrediction.


The antioxidant activity test showed that the methanol extract was active with an IC50 of 5 mg/mL. The aqueous extracts of fruits and leaves inhibit the formation of crystals of CaOx. Then, the composition of the methanol extracts of the leaves and fruits in high-performance liquid chromatography showed majority compounds such as quercetin-3-galactoside and hyperin. In silico assays showed that the identified molecules exert their effect by targeting enzymes responsible for calcium regulation, urate regulation, and maintenance of acid-base balance, and that had anti-inflammatory properties.


The present study showed that Z. lotus may be considered as a functional or nutraceutical food. However, further studies should be carried out in order to extract and purify these compounds to test their effect on urinary lithiasis.


We acknowledge the support by Price of “Baddouri Khadija” (2016) and HORIZONS Foundation, under the aegis of the Fondation de France. We also acknowledge the support by Dr. Prof. Proksch for HPLC analysis in Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich Heine Universität Düsseldorf, Germany.

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.


[1] Daudon M, Jungers P, Lacour B. Intérêt clinique de l’étude de la cristallurie. Ann Biol Clin 2004;62:379–93.Search in Google Scholar

[2] Doré B. Les lithiases rénales. Ed. Paris: Springer, 2004.Search in Google Scholar

[3] Daudon M, Knebelmann B. Epidémiologie de la lithiase urinaire. Rev Praticien 2011;61:37412–8.Search in Google Scholar

[4] Daudon M, Traxer O, Lechevallier E, Saussine C. La lithogenèse. Prog Urol. 2008;18:815–27.10.1016/j.purol.2008.09.032Search in Google Scholar PubMed

[5] Freitas AM, Schor N, Boim MA. The effect of Phyllanthus niruri on urinary inhibitors of calcium oxalate crystallization and other factors associated with renal stone formation. BJU International 2002;89:829–34.10.1046/j.1464-410X.2002.02794.xSearch in Google Scholar PubMed

[6] Alelign T, Petros B. Kidney Stone Disease: An Update on Current Concepts. Adv Urol 2018;2018:1–12.10.1155/2018/3068365Search in Google Scholar PubMed PubMed Central

[7] Felix G, Adrian R, Antonia CB. Efficacy of mixtures of magnesium, citrate and phytates calcium oxalate crystallization inhibitors in urine. J Urol 2015;194:1–8.10.1016/j.juro.2015.03.099Search in Google Scholar

[8] Farmanesh S, Ramamoorthy S, Chung J. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem 2013;136:367–76.10.1021/ja410623qSearch in Google Scholar PubMed

[9] Marangella M, Bagnis C, Bruno M. Crystallization inhibitors in the pathophysiology and treatment of nephrolithiasis. Urol Int 2004;72:6–10.10.1159/000076583Search in Google Scholar PubMed

[10] Abdelmalek F, Harrache D, Addou A, Taleb S, Semmoud A. Etude par turbidimétrie de la cristallisation oxalocalcique en présence de quelques inhibiteurs. Phys Chem 2001;4:96–107.Search in Google Scholar

[11] Hess B. Kidney stones belt, l’impact environnemental sur la lithiase urinaire. Forum Med Suisse 2011;47:853–6.10.4414/fms.2011.07684Search in Google Scholar

[12] Traxer O. Lithiase urinaire. Rev Praticien 2006;56:2093–100.Search in Google Scholar

[13] Djelloul Z, Djelloul A, Bedjaoui A, Kaid-Omar Z, Attar A, Daudon M, et al. Lithiase urinaire dans l’Ouest algérien: étude de la composition de 1354 calculs urinaires en relation avec leur localisation anatomique, l’âge et le sexe des patients. Progr Urol 2006;16:328–35.Search in Google Scholar

[14] Lavan JN, Neale FC, Posen S. Urinary calculi: clinical, biochemical and radiological studies in 619 patients. Med J Aust 1971;2:1049–61.10.5694/j.1326-5377.1971.tb92706.xSearch in Google Scholar PubMed

[15] Serio A, Fraioli A. Epidemiology of nephrolithiasis. Nephron 1999;81:26–30.10.1159/000046295Search in Google Scholar PubMed

[16] Bouatia M, Benramdane L, OuladBouyahyaIdrissi M, Draoui M. An epidemiological study on the composition of urinary stones in Morocco in relation to age and sex. Afr J Urol 2015;21:194–7.10.1016/j.afju.2015.02.006Search in Google Scholar

[17] Chagnon A. Lithiase urinaire: des médicaments pour favoriser l’expulsion des calculs? Concoursmédical 2007;129:81–2.Search in Google Scholar

[18] Atmani F, Khan SR. Effects of an extract from Herniaria hirsuta on calcium oxalate crystallization in vitro. BJU Int 2000;85:621–5.10.1046/j.1464-410x.2000.00485.xSearch in Google Scholar PubMed

[19] Khouchlaa A, Tijane M, Chebat A, Hseini S, Kahouadji A. Enquête ethnopharmacologique des plantes utilisées dans le traitement de la lithiase urinaire au Maroc. Phytothérapie. 2017;15(5):274–287. DOI: 10.1007/s10298-016-1073-4.Search in Google Scholar

[20] Benarba B, Meddah B. Ethnobotanical study, antifungal activity, phytochemical screening and total phenolic content of Algerian Aristolochia longa. J Int Ethnopharmacol 2014;3:150–4.10.5455/jice.20140826030222Search in Google Scholar PubMed PubMed Central

[21] Ghourri M, Zidane L, Douira A. Catalogue des plantes médicinales utilisées dans le traitement de la lithiase rénale dans la province de Tan-Tan (Maroc Saharien). Int J Biol Chem Sci 2013;7:1688–700.10.4314/ijbcs.v7i4.24Search in Google Scholar

[22] Hseini S, Kahouadji A, Lahssissene H, Tijane M. Analyses floristique et ethnobotanique des plantes vasculaires médicinales utilisées dans la région de Rabat (Maroc occidental). LAZAROA 2007;28:93–100.Search in Google Scholar

[23] El Rhaffari U, Zaid A. Pratique de la phytothérapie dans le sud-est du Maroc (Tafilalet). Un savoir empirique pour une pharmacopée rénovée. Origine des pharmacopées traditionnelles et élaboration des pharmacopées savantes. Paris: Edition de l’Institut de Recherche pour le Développement, 2004:293–318.10.4000/books.irdeditions.7244Search in Google Scholar

[24] Bouayyadi L, El Hafian M, Zidane L. Étude floristique et ethnobotanique de la flore médicinale dans la région du Gharb, Maroc. J Appl Biosci 2015;93:8760–9.10.4314/jab.v93i1.10Search in Google Scholar

[25] Kahouadji MS. Contribution à une étude ethnobotanique des plantes médicinales dans le Maroc oriental. – Thèse. Université Mohammed premier, Faculté des Sciences, Oujda, 1995:205.Search in Google Scholar

[26] Khouchlaa A, Bouyahya A, AitLahcen S, Bakri Y, Dakka N, Tijane M. Phytochemical screening, evaluation of antioxidant activity and litholytic effect of Zizyphus lotus L. extracts. World J Pharm Res 2017;6:1354–67.Search in Google Scholar

[27] Kubola J, Siriamornpun S. Phenolic content and antioxidant activities of bitter gourd (Momordica charantia L.) leaf stem and fruit fraction extracts in vitro. Food Chem 2008;110:881–90.10.1016/j.foodchem.2008.02.076Search in Google Scholar PubMed

[28] Abderrahim LA, Taïbi K, Abderrahim CA. Assessment of the antimicrobial and antioxidant activities of Ziziphus lotus and Peganum harmala. Iran J Sci Technol Trans Sci 2019;43:409–14.10.1007/s40995-017-0411-xSearch in Google Scholar

[29] Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci 2014;3:174–9.10.11648/j.ijnfs.20140303.16Search in Google Scholar

[30] Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014;42:33–8.10.1093/nar/gku293Search in Google Scholar PubMed PubMed Central

[31] Vasanthi R, Subashini C, Ramanathan K. Identification of target classes for the ligands using Swiss Target Prediction. Int J Appl Res 2015;1:142–8.Search in Google Scholar

[32] Dirar AI, Magdi AM, Esraa MOI, Hassan SK, Alfatih F, Asaad K. In silico molecular docking of di-(2-ethylhexyl) phthalate and 13-hexyloxacyclotridec-10-en-2-one identified in Ambrosia maritima L. (Asteraceae). WJPR 2014;3:8–16.Search in Google Scholar

[33] Marmouzi I, Kharbach M, El Jemli M, Bouyahya A, Cherrah Y, Bouklouze A, et al. Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits. Ind Crops Prod 2019;132:134–9.10.1016/j.indcrop.2019.02.007Search in Google Scholar

[34] Ghazghazi H, Aouadhi C, Riahi L, Maaroufi A, Hasnaoui B. Fatty acids composition of Tunisian Ziziphus lotus L. (Desf.) fruits and variation in biological activities between leaf and fruit extracts. Nat Prod Res 2014;28:1106–10.10.1080/14786419.2014.913244Search in Google Scholar PubMed

[35] Bakchiche B, Gherib A. Activités antioxydantes des polyphénols extraits de plantes médicinales de la pharmacopée traditionnelle d’Algérie. Int J Innov Appl Stud 2014;9:167–72.Search in Google Scholar

[36] Benslama A, Harrar A, Gul F, Demirtas I. Phenolic compounds, antioxidant and antibacterial activities of Zizyphus lotus L. leaves extracts. Nat Prod J 2017;7:316–22.10.2174/2210315507666170530090957Search in Google Scholar

[37] Ghalem M, Murtaza B, Belarbi M, Akhtar Khan N, Hichami A. Antiinflammatory and antioxidant activities of a polyphenol rich extract from Zizyphus lotus L fruit pulp play a protective role against obesity. J Food Biochem. 2018;42(6):1–15. DOI: 10.1111/jfbc.12689.Search in Google Scholar

[38] Rsaissi N, El Kamili, Bencharki B, Hillali L, Bouhache M. Antimicrobial activity of fruits extracts of the wild jujube “Ziziphus lotus (L.) Desf. Int J Sci Eng Res 2013;4:1521–8.Search in Google Scholar

[39] Naz S, Sultana B, Shahid M, Rehman K-u. Alteration in antioxidant and antimicrobial attributes of leaves of Zizyphus species in response to maturation. J Med Plants Res 2013;7:61–70.Search in Google Scholar

[40] Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: influence on membrane transporters. J Intercult Etnopharmacol. 2016;5(1):97–104. DOI: 10.5455/jice.20160118062127.Search in Google Scholar PubMed PubMed Central

[41] Raffo A, Leonardi C, Fogliano V, Ambrosino P, Salucci M, Gennaro L, et al. Nutritional value of cherry tomatoes (Lycopersicum esculentum Cv Naomi F1) harvested at different ripening stages. J Agric Food Chem 2002;22:6550–6.10.1021/jf020315tSearch in Google Scholar PubMed

[42] Subhash C, Mandal M. Essentials of botanical extraction principles and applications. Academic Press, an imprint of Elsevier, 2015:63–71.10.1016/B978-0-12-802325-9.00005-7Search in Google Scholar

[43] Suman D. Antimicrobial and antioxidant activities of green and ripe fruits of Averrhoa carambola Linn. and Zizyphus mauritiana Lam. Asian J Pharmaceut Clin Res 2012;5:102–5.Search in Google Scholar

[44] Salimi M, Sarkhail P, Sarkheil P, Kandelous HM, Baeeri M. Evaluation of anti-melanogenic activity of Ziziphus jujuba fruits obtained by two different extraction methods. Res J Pharmacognosy 2016;3:1–7.Search in Google Scholar

[45] Singh V, Guizani N, Essa MM, Rahman MS, Selvaraju S. In vitro antioxidant activities of Zizizphusspina-christi fruits (red date) grow in Oman. Biotechnology 2012;11:209–16.10.3923/biotech.2012.209.216Search in Google Scholar

[46] Selvam R. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res 2002;30:35–47.10.1007/s00240-001-0228-zSearch in Google Scholar PubMed

[47] Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 2003;64:1283–91.10.1046/j.1523-1755.2003.00226.xSearch in Google Scholar PubMed

[48] Baddade L, Elbir M, Mbarki M, Elhadri I, Berkani M. Zizyphus lotus anti-lithiasis activity in vitro of aqueous extracts of pulp fruit in human urine. J Master Environ Sci 2019;10:520–5.Search in Google Scholar

[49] Amar A, Harrache D, Atmani F, Bassou G, Grillon F. Effet de Parietaria officinalis sur la cristallisation de l’oxalate de calcium dans l’urine. Phytothérapie 2010;8:342–7.10.1007/s10298-010-0588-zSearch in Google Scholar

[50] Zhu W, Xu YF, Feng Y, Peng B, Che JP, Liu M, et al. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model. Urolithiasis 2014;42:519–26.10.1007/s00240-014-0695-7Search in Google Scholar PubMed

[51] Fardet L, Kettaneh A, Gérol J, Tolédano C, Tiev KP, Cabane J. Effet à court terme des apports sodés sur la pression artérielle des patients recevant une corticothérapie systémique: étude prospective, randomisée, croisée. Rev Méd Intern 2009;30:741–6.10.1016/j.revmed.2009.03.009Search in Google Scholar PubMed

[52] [56] Ericson-Neilsen W, Kaye AD. Steroids: Pharmacology, Complications, and Practice Delivery Issues. Ochsner J. 2014;14(2):203–207.10.1142/9781848168305_0013Search in Google Scholar

[53] Aouinti F, Zidane H, Tahri M, Wathelet JP, El Bachiri A. Chemical composition, mineral contents and antioxidant activity of fruits of Pistacia lentiscus L. from Eastern Morocco. J Mater Environ Sci 2014;5:199–206.Search in Google Scholar

[54] Nagao A, Seki M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 1999;63:1787–90.10.1271/bbb.63.1787Search in Google Scholar PubMed

[55] Adachi SI, Kondo S, Sato Y, Yoshizawa F, Yagasaki K. Anti-hyperuricemic effect of isorhamnetin in cultured hepatocytes and model mice: structure-activity relationships of methylquercetins as inhibitors of uric acid production. Cytotechnology 2019;71:181–92.10.1007/s10616-018-0275-8Search in Google Scholar PubMed PubMed Central

[56] Anderson ME. Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 2005;10:639–55.10.1016/j.pharmthera.2004.11.002Search in Google Scholar PubMed

[57] Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, et al. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-κB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW2647 macrophages. Molecules 2013;18:13245–59.10.3390/molecules181113245Search in Google Scholar PubMed PubMed Central

[58] Qiu S, Sun G, Zhang Y, Li X, Wang R. Involvement of the NF-κB signaling pathway in the renoprotective effects of isorhamnetin in a type 2 diabetic rat model. Biomed Rep 2016;4:628–34.10.3892/br.2016.636Search in Google Scholar PubMed PubMed Central

[59] Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci 1992;89:1804–8.10.1073/pnas.89.5.1804Search in Google Scholar PubMed PubMed Central

[60] Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int 2007;71:103–15.10.1038/ in Google Scholar PubMed

[61] Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev 2006;86:901–40.10.1152/physrev.00031.2005Search in Google Scholar PubMed

[62] Boison D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 2013;65:906–43.10.1124/pr.112.006361Search in Google Scholar PubMed PubMed Central

[63] Borgeat P. L’adénosine, un anti-inflammatoire naturel. Med Sci 1995;11:294.10.4267/10608/2204Search in Google Scholar

[64] Miwatashi S, Arikawa Y, Matsumoto T, Uga K, Kanzaki N, Imai YN, et al. Synthesis and biological activities of 4-phenyl-5-pyridyl-1,3-thiazole derivatives as selective adenosine A3 antagonists. Chem Pharmaceut Bull 2008;56:1126–37.10.1248/cpb.56.1126Search in Google Scholar PubMed

[65] Gao ZG, Ye K, Göblyös A, Ijzerman AP, Jacobson KA. Flexible modulation of agonist efficacy at the human A3 adenosine receptor by the imidazoquinoline allosteric enhancer LUF6000. BMC Pharmacol 2008;8:20.10.1186/1471-2210-8-20Search in Google Scholar PubMed PubMed Central

[66] Roberts VS, Cown PJ, Alexander SI, Robson SC, Dwyer KM. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int 2014;86:685–92.10.1038/ki.2014.244Search in Google Scholar PubMed

[67] Zhang W, Lu X, Wang W, Fu Y, Zhou X, Zhang N, et al. Inhibitory effects of emodin, thymol, and astragalin on Leptospira interrogans-induced inflammatory response in the uterine and endometrium epithelial cells of mice. Inflammation 2017;40:666–75.10.1007/s10753-017-0513-9Search in Google Scholar PubMed

Received: 2019-03-19
Accepted: 2019-10-03
Published Online: 2020-03-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.12.2023 from
Scroll to top button