Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter Oldenbourg August 24, 2018

Waiting Times for Outpatient Treatment in Germany: New Experimental Evidence from Primary Data

Nils Heinrich, Ansgar Wübker and Christiane Wuckel

Abstract

Long waiting times are a common feature and a major concern in many public health care systems. They are often characterized as inefficient because they are a burden to patients without generating any gains for providers. There is an ongoing debate in Germany regarding the preferential treatment given to private health insurance (PHI) holders while statutory health insurance (SHI) holders face continuously increasing waiting times. In order to tackle this problem in the outpatient sector, Germany initiated a reform in 2015 which was aimed at providing SHI holders with appointments within an acceptable time frame. We exploit longitudinal experimental data to examine waiting times for six elective outpatient treatments in Germany for PHI and SHI holders before and after the reform. We find a considerable difference in waiting times favoring private patients. For SHI holders, waiting times remained stable over time (27.5 days in 2014, 30.7 days in 2016, Δ 3.2 days, p-value=0.889) while PHI holders experienced a significant improvement (13.5 days in 2014; 7.8 days in 2016; Δ 5.7 days, p-value=0.002). The results indicate that even after the reform there is still an unequal access to elective outpatient treatment depending on the patient’s insurance status.

JEL Classification: I10; I11; I18

References

Ai, C., E.C. Norton. (2003), Interaction Terms in Logit and Probit Models, Economics Letters 80 (1): 123–129.10.1016/S0165-1765(03)00032-6Search in Google Scholar

Asplin, B.R., K.V. Rhodes, H. Levy, N. Lurie, A.L. Crain, B.P. Carlin, A.L. Kellermann. (2005), Insurance Status and Access to Urgent Ambulatory Care Follow-Up Appointments, Journal of the American Medical Association 294 (10): 1248–1254.10.1001/jama.294.10.1248Search in Google Scholar

BMG - Bundesministerium für Gesundheit. (2015), Daten Des Gesundheitswesens 2013., 167. Available at: www.bundesgesundheitsministerium.de.Search in Google Scholar

Bundesregierung, D. (2016), Sozialversicherung Im Bundesrat. Neue Bemessungsgrenzen Für 2016. Available at: www.bundesregierung.de/Content/DE/Artikel/2015/10/2015-10-14-sozialversicherung.html. (assessed on 29th January 2018)Search in Google Scholar

Bundestag, D. (2015), Gesetz Zur Stärkung Der Versorgung in Der Gesetzlichen Krankenversicherung, Bundesgesetzblatt 2015 (30): 1211–1244.Search in Google Scholar

Cullis, J.G., P.R. Jones, C. Propper. (2000), Waiting Lists and Medical Treatment: Analysis and Policies. Handbook of Health Economics 1 (PART B): 1201–1249.10.1016/S1574-0064(00)80036-0Search in Google Scholar

Finkenstädt, V., F. Niehaus. (2013), Rationierung Und Versorgungsunterschiede in Gesundheitssystemen: Ein Internationaler Überblick. WIP, Wissenschaftliches Institut der PKV.Search in Google Scholar

Johannesson, M., P.-O. Johansson, T. Söderqvist. (1998), Time Spent on Waiting Lists for Medical Care: An Insurance Approach. Journal of Health Economics 17: 627–644.1018551510.1016/S0167-6296(97)00044-1Search in Google Scholar

Lindsay, C.M., B. Feigenbaum. (1984), Rationing by Waiting Lists on JSTOR, The American Economic Review 74 (3): 404–417.Search in Google Scholar

Lungen, M., B. Stollenwerk, P. Messner, K.W. Lauterbach, A. Gerber. (2008), Waiting Times for Elective Treatments according to Insurance Type: A Randomized Empirical Study in Germany. International Journal for Equity in Health 7: 1.10.1186/1475-9276-7-1Search in Google Scholar

Niehaus, F. (2009), Ein Vergleich Der Ärztlichen Vergütung Nach GOÄ Und EBM. WIP-Diskussionspapier 7: 09.Search in Google Scholar

Roll, K., T. Stargardt, J. Schreyögg. (2012), Effect of Type of Insurance and Income on Waiting Time for Outpatient Care, The Geneva Papers on Risk and Insurance Issues and Practice 37 (S4): 609–632.10.1057/gpp.2012.6Search in Google Scholar

Salm, M., A. Wübker, (2017). Causes of Regional Variation in Healthcare Utilization in Germany. Ruhr Economic Papers 675.Search in Google Scholar

Sauerland, D., B.A. Kuchinke, A. Wübker. (2009), Warten Gesetzlich Versicherte Länger? Zum Einfluss Des Versichertenstatus Auf Den Zugang Zu Medizinischen Leistungen Im Stationären Sektor, Gesundheitsökonomie & Qualitätsmanagement 14 (02): 86–94.10.1055/s-2008-1027749Search in Google Scholar

Schwierz, C., A. Wübker, A. Wübker, B.A. Kuchinke. (2011), Discrimination in Waiting Times by Insurance Type and Financial Soundness of German Acute Care Hospitals, European Journal of Health Economics 12 (5): 405–416.10.1007/s10198-010-0254-2Search in Google Scholar

Siciliani, L., J. Hurst. (2005), Tackling Excessive Waiting Times for Elective Surgery: A Comparative Analysis of Policies in 12 OECD Countries, Health Policy 72 (2): 201–215.1580215510.1016/j.healthpol.2004.07.003Search in Google Scholar

Siciliani, L., V. Moran, M. Borowitz. (2014), Measuring and Comparing Health Care Waiting Times in OECD Countries, Health Policy 118 (3): 292–303.2521783810.1016/j.healthpol.2014.08.011Search in Google Scholar

Siciliani, L., R. Verzulli. (2009), Waiting Times and Socioeconomic Status among Elderly Europeans: Evidence from Share, Health Economics 18 (11): 1295–1306.10.1002/hec.142919191260Search in Google Scholar

Sundmacher, L., T. Kopetsch. (2013), Waiting Times in the Ambulatory Sector–The Case of Chronically Ill Patients, International Journal for Equity in Health 12 (1): 77.10.1186/1475-9276-12-7724020453Search in Google Scholar

Viberg, N., B.C. Forsberg, M. Borowitz, R. Molin. (2013), International Comparisons of Waiting Times in Health Care – Limitations and Prospects, Health Policy 112 (1–2): 53–61.10.1016/j.healthpol.2013.06.01323895881Search in Google Scholar

Article note

This article is part of the special issue “Empirical Health Economics” published in the Journal of Economics and Statistics. Access to further articles of this special issue can be obtained at www.degruyter.com/journals/jbnst.

Appendix

Table A1:

Model specification.

Panel A – OLS
Dependent Variable: Waiting time in logs
OLSFEGLM – Negative binomial
(1)(2)(3)
Year 2016−0.537***−0.827***−0.612***
(0.001)(0.000)(0.000)
SHI0.646***0.1750.629***
(0.001)(0.432)(0.001)
Year 2016 # SHI0.611***1.060***0.735***
(0.009)(0.000)(0.002)
R20.3720.323
Mean dependent variable2.0962.09619.509
N385.000385.000391.000
Panel B – OLS
Dependent Variable: Dummy – Waiting time of more than 4 weeks
OLSFE
(1)(2)
Year 2016−0.141**−0.218***
(0.013)(0.002)
SHI0.178**0.038
(0.014)(0.645)
Year 2016 # SHI0.154*0.281***
(0.054)(0.002)
R20.3060.199
Mean dependent variable0.2890.289
N391.000391.000
Treatment indicatorsYesYesYes

  1. * p<0.10, ** p<0.05, *** p<0.01

Table A2:

Variance comparison.

TotalSHIPHI
Ratio of

Standard deviation 2014/Standard deviation 2016
0.820.771.28
Levene’s robust test statistic1.3833.4647.184
p-value0.2400.0640.008
Brown and Forsythe’s F statistic (median)0.0001.1035.468
p-value0.9840.2950.020
Brown and Forsythe’s F statistic (trimmed mean)0.0442.1806.390
p-value0.8340.1420.012
N 20141376968
N 2016254124130
Published Online: 2018-08-24
Published in Print: 2018-09-25

© 2018 Oldenbourg Wissenschaftsverlag GmbH, Published by De Gruyter Oldenbourg, Berlin/Boston