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Abstract: In the causal adjustment setting, variable selection techniques based only on the outcome or only
on the treatment allocation model can result in the omission of confounders and hence may lead to bias,
or the inclusion of spurious variables and hence cause variance inflation, in estimation of the treatment
effect. We propose a variable selection method using a penalized objective function that is based on both the
outcome and treatment assignment models. The proposed method facilitates confounder selection in high-
dimensional settings. We show that under some mild conditions our method attains the oracle property. The
selected variables are used to form a doubly robust regression estimator of the treatment effect. Using the
proposed method we analyze a set of data on economic growth and study the effect of life expectancy as a
measure of population health on the average growth rate of gross domestic product per capita.
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1 Introduction
In the analysis of observational data, when attempting to establish the magnitude of the causal effect of
treatment (or exposure) in the presence of confounding, the practitioner is faced with certain modeling
decisions that facilitate estimation. Should one take the parametric approach, at least one of two stat-
istical models must be proposed; (i) the conditional mean model that models the expected outcome as a
function of predictors, and (ii) the treatment allocation model that describes the mechanism via which treat-
ment is allocated to (or, at least, received by) individuals in the study, again as a function of the predictors
[1, 2].

Predictors that appear in both mechanisms (i) and (ii) are termed confounders, and their omission from
models (i) and (ii) is typically regarded as a serious error, as it leads to inconsistent estimators of the treat-
ment effect. Thus practitioners usually adopt a conservative approach, and attempt to ensure that they do not
omit confounders by fitting a richly parameterized treatment allocation model. The conservative approach,
however, can lead to predictors of treatment allocation only – and not outcome – being included in the
treatment allocation model. The inclusion of such “spurious" variables in model (ii) is usually regarded as
harmless. However, the typical forfeit for this conservatism is inflation of variance of the effect estimator
[3, 4]. Moreover, [5] and [6] showed that inclusion of variables that are only predictors of treatment may
cause bias [7, 8]. This problem also applies to the conditional mean model, but is in practice less problem-
atic, as practitioners seem to be more concerned with bias removal, and therefore more likely to introduce
the spurious variables inmodel (ii). Little formal guidance as to how the practitioner should act in this setting
has been provided. In this paper, we refer to variables that only predict the treatment and are not associated
with the outcome as treatment predictors.

As has been shown by [9], it is plausible that judicious variable selection may lead to appreciable
efficiency gains, and several approaches with this aim have been proposed [10, 11]. However, confounder
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selection methods based on either just the treatment assignment model or just the outcome model may fail
to account for non-ignorable confounders which barely predict the treatment or the outcome, respectively
[12, 13]: in this manuscript, we use the term weak confounder for these variables. [14] shows that confounder
selection procedures based on AIC and BIC can be sub-optimal and introduce amethod based on the focused
information criterion (FIC) which targets the treatment effect by minimizing a prediction mean square error
(see also the cross-validation method of [15]). [16] introduces a Super Learner estimator which is computed
by selecting a candidate from a set of estimators obtained from different models using a cross-validation risk
[17, 18].

Bayesian adjustment for confounding (BAC) is a parametric variable selection approach introduced by
[19]; BAC specifies a prior distribution for a set of possible models which includes a dependence parameter,
w ∈ [1,∞], representing the odds of including a variable in the outcome model given that the same variable
is in the propensity score model [20]. If we know a priori that a predictor of treatment is in fact a confounder,
then w can be set to∞ [13, 21]. [22] proposes a decision-theoretic approach to confounder selection that can
handle high-dimensional cases; a Bayesian regression model is fit and using the posterior credible region of
the regression parameters, a set of candidate models is formed. A sparse model is then found by penalizing
models that do not include confounders. This method is conservative in the sense that it may include treat-
ment predictors that may inflate the variance of the treatment effect [23]. Also, tuning the penalty function
can be challenging. Doubly robust procedures have also been proposed where variables are selected using
both the outcome and the treatment assignment models [12, 24].

Asymptotically, it is known that penalizing the conditional outcome model, given treatment and cov-
ariates, results in a valid variable selection strategy for causal effect estimation; however, for small to
moderate sample sizes, it may result in the omission of weak confounders [25]. The objective of this manu-
script is to improve the small sample performance of the outcome penalization strategy while maintaining
its asymptotic performance (Table 2). We present a covariate selection procedure which facilitates the estim-
ation of the treatment effect in the high-dimensional cases. Specifically, we propose a penalized objective
function which considers both covariate-treatment and covariate-outcome associations and has the abil-
ity to select even weak confounders. This objective function is used to identify the set of non-ignorable
confounders and predictors of outcome; the resulting parameter estimates do not have any causal inter-
pretation. We derive the asymptotic properties of procedure and show that under some mild conditions
the estimators have oracle properties (specifically, are consistent and asymptotically normally distrib-
uted). We utilize the selected covariates to estimate the causal effect of interest using a doubly robust
estimator.

2 Preliminaries & notation
In standard notation, let Y(d) denote the (potential) outcome arising from treatment d, and let D denote
the treatment received. We consider for illustration the case of binary treatment. The observed outcome, Y,
is defined as DY(1) + (1 – D)Y(0). We restrict attention here to the situation where each predictor can be
classified into one of three types, and to single time-point studies. We consider
(I) treatment predictors (X1), which are related to treatment and not to outcome.
(II) confounders (X2), which are related to both outcome and treatment.
(III) outcome predictors (X3), which are related to outcome and not to treatment;

see the directed acyclic graph (DAG) in Figure 1. In addition, as is usual, we will make the assumption of
no unmeasured confounders, that is, that treatment received D and potential outcome to treatment d, Y(d),
are independent, given the measured confounders, i.e., X2. In any practical situation, to facilitate causal
inference, the analyst must make an assessment as to the structural nature of the relationships between the
variables encoded by the DAG in Figure 1.
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Figure 1: Covariate types: Type-I: X1, Type-II: X2 and Type-III: X3.

2.1 The propensity score for binary treatments

The propensity score, 0(.), for binary treatment D is defined as 0(x) = Pr(D = 1|x), where x is a p-dimensional
vector of (all) covariates. In its random variable form, [2] show that 0(X) is the coarsest function of covariates
that exhibits the balancing property, that is,D ⊥ X |0(X). As a consequence, the causal effect , = E[Y(1)–Y(0)]
can be computed by iterated expectation

, = EX[E{Y(1)|X} – E{Y(0)|X}] = E0[E{Y(1)|0} – E{Y(0)|0}], (1)

where E0 denotes the expectation with respect to the distribution of 0(X). For more details see [26] and [27].

Remark 1: Inclusion of covariates that are just related to the outcome in the propensity scoremodel increases
the covariance between the fitted 0 and Y, and decreases the variance of the estimated causal effect, in line
with the results of [9] and [12].

2.2 Penalized estimation

In a given parametric model, if ! is a r-dimensional regression coefficient, p+(.) is a penalty function and
lm(!) is the negative log-likelihood, the maximum penalized likelihood (MPL) estimator !̂ml is defined as

!̂ml = argmin
!

⎡
⎣lm(!) + n

r∑
j=1

p+(|!j|)
⎤
⎦ .

MPL estimators are shrinkage estimators, and as such, they typically have more finite sample bias, though
less variation than unpenalized analogues. Commonly used penalty functions include LASSO [28], SCAD
[29], Elastic Net [30] and HARD [31].

The remainder of this paper is organized as follows. Section 3 presents our two step variable selection
and estimation procedure; we establish its theoretical properties. The performance of the proposedmethod is
studied via simulation in Section 4.We analyze a real data set in Section 5, and Section 6 contains concluding
remarks. All proofs are given in Appendix A of the Supplementary Materials.

3 Penalization and treatment effect estimation
In this section, we present our proposed method for estimating the treatment effect in high-dimensional
cases. We separate the covariate selection and treatment effect estimation procedure. First, we form a pen-
alized objective function which is used to identify the important covariates, and establish the theoretical
properties of the resulting estimators (i.e., minimizers of the penalized objective function). Note that because
of the special characteristics of this function the estimators do not have any causal interpretation and are
used just to prioritize variables. Second, treatment effect estimation is performed using a doubly robust estim-
ator with the selected covariates. We use a simple model structure to illustrate the methodology, and assume
that a random sample of size n of observations of outcome, exposure and covariates is available.
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In order to present the method, we initially assume that columns of X are orthogonal; this simplifying
assumption is relaxed in Appendix C of the Supplementary Materials.

3.1 Penalized objective function

Consider the following linear outcome model under a binary exposure d

Y = (d + x!y + :,

where x is a 1 × r standardized covariate vector, and : is standard normal residual error. Assuming a logit
model for the propensity score, we have

0(x, !d) = p(D = 1|x, !d) = exp{x!d}
1 + exp{x!d}

.

Let X denote the corresponding n × r design matrix. In the formulation, !y and !d denote r × 1 vectors of
parameters and ( is the treatment effect.

First, we form an objective function, M(!), in which the coefficients !y and !d are replaced by a single
common vector of coefficients ! that is proportional to a weighted sum of |!y| and |!d|, where |.| denotes
the componentwise absolute value. This will guarantee that the objective function satisfies the following
condition:

Argmin Condition:An element, !̂j, of theminimizer !̂ ofM(!) converges to zero as n → ∞ if the corresponding
covariate is not associated with both treatment and outcome.

In standard linear regression where we regress Y on a vector of covariates X (with no treatment variable)
that are presumed orthogonal, an example of an objective function that estimates |!y| is

M(!) = 1
2n

(∣∣∣∣∣
n∑
i=1

x⊺i yi
∣∣∣∣∣ – n!

)
⊺
(∣∣∣∣∣

n∑
i=1

x⊺i yi
∣∣∣∣∣ – n!

)

yielding the estimating equation and estimate

∂M(!)
∂! =

∣∣∣∣∣
n∑
i=1

x⊺i yi
∣∣∣∣∣ – n! = 0 �⇒ !̂ = 1

n

∣∣∣∣∣
n∑
i=1

x⊺i yi
∣∣∣∣∣ .

We have used the fact n–1x⊺x is an identity matrix due to standardization. It is clear that as n �→ ∞,
!̂ p
�→ |E[x⊺i Yi]| Similarly, in a binary exposure setting, |!d| can be estimated using the objective function[

–
∣∣∑n

i=1 xidi
∣∣ ! +∑n

i=1 log(1 + exp{xi!})
]
which is based on minus the log likelihood for a logistic regression.

Now, we combine these two objective functions and show that the resulting objective function have some
interesting features. First, we obtain the least squares (or ridge) (̃ of ( by regressing Y on D and the vector
of covariates X. Because of the inclusion of spurious and treatment predictors in the model, (̃ is not efficient
but is but is consistent for ( under the no unmeasured confounders assumption and a correctly specified
outcome model. Define Ỹ = Y – (̃D. Let

M(!) = 1
2

[∣∣∣
n∑
i=1

xĩyi
∣∣∣ – !⊺

n∑
i=1

(x⊺i xi)
]( n∑

i=1
x⊺i xi

)–1 [∣∣∣
n∑
i=1

xĩyi
∣∣∣ – !⊺

n∑
i=1

(x⊺i xi)
]
⊺

+
1
4
[
–
∣∣∣

n∑
i=1

xidi
∣∣∣! +

n∑
i=1

log(1 + exp{xi!})
]
, (2)
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where 4 is a positive constant. Under orthogonality of X and standardization, we have

M(!) = 1
2n

[∣∣∣
n∑
i=1

x ĩyi
∣∣∣ – n!⊺][∣∣∣

n∑
i=1

x ĩyi
∣∣∣ – n!⊺]⊺

+
1
4
[
–
∣∣∣

n∑
i=1

xidi
∣∣∣! +

n∑
i=1

log(1 + exp{xi!})
]
.

Note that for each j, the parameter !j corresponding to xj is the same in both models. Now, we show
that in this function the absolute values play a critical rule in satisfying the Argmin condition. Let !̂ =
argmin!M(!) and !̃y be the least squares estimate of the parameters in the outcome model. By convexity
ofM(!), !̂must be the unique solution to ∂M(!)/∂! = 0, which implies that

[
n̂! + 1

4

n∑
i=1

x⊺i
exp{xî!}

1 + exp{xî!}

]
=
∣∣∣∣∣

n∑
i=1

x⊺i ỹi
∣∣∣∣∣ +

1
4

∣∣∣∣∣
n∑
i=1

x⊺i di
∣∣∣∣∣ = n

∣∣̃!y∣∣ + 1
4

∣∣∣∣∣
n∑
i=1

x⊺i di
∣∣∣∣∣ . (3)

This equation shows that !̂ = 0 (i.e. the Argmin condition is satisfied) if cov(X ,Y) = cov(X ,D) = 0. Note that
cov(X ,D) = 0 implies cov(X, Ỹ) = cov(X,Y). Let !̃d be the maximum likelihood estimate of the parameters in
the treatment model. Then, using the first two terms of a Taylor expansion, we have

∣∣∑n
i=1 x⊺i di

∣∣
≈ n |̃!d| /4,

exp{x î!}/(1 + exp{x î!}) ≈ 1/2 + !̂xi/4, and thus

!̂ ≈ 44
44 + 1

∣∣̃!y∣∣ + 1
44 + 1 |̃!d| .

Hence, !̂ is a weighted sum of |̃!y| and |̃!d|. The constant 4 controls the contribution of components
∣∣̃!y∣∣ and

|̃!d| to the estimator. For example, for 4 = 2, !̂ ≈ 8
11
∣∣̃!y∣∣ + 1

11 |̃!d|; while for 4 = 0.1, !̂ ≈ 0.4
1.4
∣∣̃!y∣∣ + 1

1.4 |̃!d|.
Thus, 4 gives a flexibility to our objective function such that as it decreases to zero the proposed estimate !̂
converges to |̃!d|. See Section 3.2 for more detailed discussion.

Figure 2 visually presents how !̂j behaves, for a fixed 4 = 0.5, when !̂jy converges to zero as sample
size increases, i.e., the jth variable becomes insignificant. Specifically, this figure presents a case where
there is just one covariate (i.e., j = 1) and the coefficient of this covariate in outcome and treatment models
are !jy = 1/

√
n and !jd = 0.3, respectively, where n is the sample size. As expected, !̂ corresponding to this

covariate does not converge to zero as sample size increases. The same behavior would be observed if !jd → 0
as n →∞ and !jy is a non-zero constant.
Therefore, penalizing objective function (2) results in selecting covariates that are either related to outcome
(Type-III) or treatment (Type-I). However, this is against our goal of keeping variables that are either predict-
ors of the outcome or non-ignorable confounders and excluding treatment predictors (Type-I). To deal with
this problem, we present a weighted lasso penalty function that is tailored specifically for causal inference
variable selection:

+
r∑
j=1

|!j|
(̃!jy)2(1 + |̃!jd|)2 ,

where !̃y and !̃d are the least squares (or ridge) and maximum likelihood estimates of the parameters in
the outcome and treatment models, respectively, and + is a tuning parameter. Thus, the proposed modified
penalized objective function is given by

Mp(!) = M(!) + +
r∑
j=1

|!j|
(̃!jy)2(1 + |̃!jd|)2 . (4)

We refer to !̂ = argmin!Mp(!) as penalized modified objective function estimators (PMOE). The magnitude
of the penalty on each parameter is proportional to its contribution to the outcome and treatment model.
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Figure 2: Performance of the modified objective function based estimator for different sample sizes n.
The dashed and solid lines are 1/

√
n and the estimated coefficient !̂ using the modified objective function.

Note that as !̂jy → 0, our penalty function puts more penalty on the jth parameter while considering the
covariate-treatment association. For example, when a covariate barely predicts the outcome and treatment,
our proposed penalty function imposes a stronger penalty on the parameter compared to a case where a cov-
ariate barely predicts the outcome and is strongly related to treatment. This is an important feature of the
proposed penalty function which allows selecting such weak confounders for small sample sizes. The pro-
posed penalized estimator asymptotically selects the same covariates as the adaptive lasso on the outcome
model [32, 25]. Thus, the proposed method improves the small sample performance of the outcome model
penalization strategy while maintaining the asymptotic properties of this strategy.

3.2 The role of 4 in PMOE

The constant 4 reflects investigators belief about the importance of including variables that are
weakly(strongly) related to outcome and strongly(weakly) related to treatment. For smaller values of 4, vari-
ables that are weakly related to the outcome but strongly to the treatment have more contribution to !̂ and
have more chance to be selected. Also, when 4 = ∞, the treatment mechanism does not have any contri-
bution in the objective function (2). Thus, our procedure performs similarly to the outcome model based
variable selection that may exclude non-ignorable confounders that are weakly related to the outcome.
Often investigators do not have an idea a priori about how to weigh the importance of different types of
confounders. In Section 3.4, a method that helps the investigators to properly choose this tuning parameter
is presented. Our simulation studies shed more light on the role of 4 in our procedure.

3.3 Main theorem

Suppose !0 = (!01, !02) is the true parameter value of the r-dimensional vector of parameters where
!02 = {!j, j = s + 1, ..., r} ≡ 0 contains those elements of ! that are in fact zero, so that the corresponding
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predictors are not confounders; s denotes the true number of predictors present in the model (exact sparsity
assumption). Let !̂ = (̂!1, !̂2) be the vector of estimators corresponding to (4). The next theorem proves the
sparsity and asymptotic normality of the proposed penalized estimators under the following two conditions:

(a) Let

n∑
i=1

:ĩy = |
n∑
i=1

x ĩyi| – n!⊺0 and
n∑
i=1

:id = |
n∑
i=1

dixi| –
n∑
i=1

xi
exp{xi!0}

1 + exp{xi!0}
.

We assume that 1√
n
∑n

i=1[:ĩy + 1
4 :id] converges in distribution a multivariate normal Nr(0, G(!0)).

(b) Let

1
n

[
n1 +

1
4

n∑
i=1

exp{xi!0}
[1 + exp{xi!0}]2

x⊺i xi
]

p
�→ K(!0),

where K(!0) is a r × r positive definite matrix and 1 is the identity matrix.

Theorem 1. (Oracle properties) Suppose conditions (a) & (b) are fulfilled, further +n/
√
n → 0 and +n

√
n → ∞.

Then
(a) Pr(̂!2 = 0) → 1 as n →∞
(b)

√
n(̂!01 – !01)

d
�→ N(0,K–1

11 G11K–1
11 ),

where !01 = !01 is the true vector of non-zero coefficients. Also,K11 and G11 are corresponding elements ofK and
G, respectively.

3.4 Choosing the tuning parameters

We select the tuning parameter . = (4, +) using the Generalized Cross Validation (GCV) method suggested by
[28] and [29]. Let X. be the selected covariates corresponding to a specific value of . , we first regress Ỹ on X.
and calculate the residual sum of square (RSS) of this this model. Then

GCV(. ) = RSS(. )/n
[1 – d(. )/n]2 ,

where d(. ) = trace[X . (X⊺. X . + nG. (̂!))–1)X⊺. ] is the effective number of parameters and G. (!) =
diag[p′. (|!1|)/|!1|, ..., p′. (|!r|)/|!r|]. The selected tuning parameter .̂ is defined by .̂ = argmin. GCV(. ).

3.5 Estimation of the causal effect

For treatment effect estimation, we fit the followingmodel using the set of covariates selected in the previous
step; note that a user may want to use other causal adjustment models such as inverse probability weighting
or propensity score matching, and the selection approach can be used for these procedures also.

Our model is a slight modification of the conventional propensity score regression approach of [33], and
specifies

E[Yi|Si = si, X i = xi] = (si + g(x; γ ), (5)

where Si = Di – E[Di|X i] = Di – 0(X i), g(x; γ ) is a function of covariates and 0 is the propensity score. The
quantity Si is used in place of Di; if Di is used the fitted model may result in a biased estimator for ( since
g(x; γ ) may be incorrectly specified. By defining Si in this way, we restore corr(Si, X ij) = 0 for j = 1, 2, .., p
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where p is the number of selected variables (if 0(xi) = E[Di|Xi = xi] is correctly specified), as 0(xi) is the
(fitted) expected value of Di, and hence x⊺j (D–0(x)) = 0, where x⊺j = (x1j, . . . , xnj). Therefore, misspecification
of g(.) will not result in an inconsistent estimator of ( provided that 0(x) is correctly specified. Moreover,
[33] showed that the proposed estimator attains the semiparametric bound when both g(x; γ ) and 0(x) are
correctly specified [34].

In general, this model results in a doubly robust estimator (see [35], [36] and [37]); it yields a consistent
estimator of ( if either the propensity score model or conditional mean model (5) is correctly specified, and
is the most efficient estimator [38] when both are correctly specified. For additional details on the related
asymptotic and finite sample behavior, see [39–41] and [42].

Remark 2: The importance of the doubly robust estimator is that, provided the postulated outcome and
treatment model identify the true non-zero coefficients in each model, the proposed estimation procedure
will consistently estimate the treatment effect given that at least one of the propensity score or outcome
models are correctly specified. Assuming linear working models, a sufficient but not necessary condition for
selecting non-ignorable confounders is the linearity of the true models in their parameters.

The model chosen for estimation of the treatment effect is data dependent. Owing to the inherited
uncertainty in the selected model, making statistical inference about the treatment effect “post-selection
inference". Hence, inference about the treatment effect obtained in the estimation step needs to be done
with caution. Under certain regularity conditions, [43] developed the weak consistency of the post-selection
estimator [44, 45].

The post-selection inference issue implies that the standard error of (̂ obtained by fitting a linear model
(5) that includes the selected variables are, in general, under estimated, and thus the standard confidence
intervals will be under covered. To mitigate this problem, we propose to approximate the standard errors
of our estimator using an idea similar to [46]. Specifically, we bootstrap the sample and in each bootstrap,
force the components of the penalized estimator !̂ to zero whenever they are close to zero and estimate the
treatment effect using the selected covariates, i.e., we define !̂† = !̂1(|̂!| > 1/√n). Although our simulation
results suggest that the thresholded bootstrap method produces valid confidence intervals, developing the
theoretical properties of the method merits further investigation that is beyond the scope of this paper.

3.6 The procedure summary

The penalized treatment effect estimation process explained in Sections 3.1 to 3.5 can be summarized as
follows:
1. Estimate the vector of parameters !̂ = argmin!Mp(!) whereMp(!) is defined in (4).
2. Using the covariates with ! ≠ 0, estimate the propensity score 0̂(X).
3. Define a random variable Si = Di – 0̂(X i) and fit the outcome model E[Yi|d, x] = (si + g(xi; γ ). The vector of

parameters ((, γ ) is estimated using ordinary least squares. For simplicity, we assume the linear working
model for g(xi; γ ) = γ ⊺xi. The design matrix X includes a subset of variables with ! ≠ 0.

4 Simulation studies
In this section, we study the performance of our proposed variable selection method using simulated data.
We compare our results with BAC method introduced by [19], the Bayesian credible region (Cred. Reg.)
introduced by [22], the collaborative targeted maximum likelihood estimators (CTMLE) introduced by [24], a
doubly robust approach (Belloni) proposed by [12] and outcome penalized estimator (Y-fit) where we regress
the outcome against the treatment and covariates, but only penalize the covariates. Our simulation includes
a scenario in which there is a weak confounder that is strongly related to the treatment but weakly to the
outcome. We consider linear working models for g() throughout this section.
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We generate 500 data sets of sizes 300 and 500 from the following two models:
1. Y ∼ Normal(D + 2X1 + 0.5X2 + 5X3 + 5X4, 4)
2. Y ∼ Normal(D + 2X1 + 0.2X2 + 5X3 + 5X4, 4)

where in both models

D ∼ Bernoulli
(
0(X) = exp{0.5X1 – X2 + 0.3X5 – 0.3X6 + 0.3X7 – 0.3X8}

1 + exp{0.5X1 – X2 + 0.3X5 – 0.3X6 + 0.3X7 – 0.3X8}

)
,

and Xk has aN(1, 4) for k = 1, ..., 100. Note that in the second scenario, X2 is considered as a weak confounder.
Results are summarized in Table 1; the Y-fit row refers to the estimator obtained by penalizing the outcome
model using LASSO penalty, and the Oracle row refers to estimator obtained by including (X1,X2,X3,X4) in
the propensity score and the outcome model (5). We studied the performance of PMOE for different values
of constant 4 = 0.1, 0.5, 1, 2, 4, 100 and the optimal one that is chosen by the GCV criterion, i.e., PMOE4=opt.
In the first scenario there is no weak confounder and the Y-fit is omitted since the results are similar to the
PMOE4=20 row. The Bayesian adjustment for confounding (BAC) has been implemented using the R package
BEAU with 9 = ∞ and the Bayesian credible region (Cred. Reg.) has been implemented using the R package
BayesPenwith flat prior. The doubly robust variable selectionmethod, i.e., Belloni, is also implemented using
the R package hdm. Finally, we implemented CTMLE.

Figure 3 shows the proportion of times that our algorithm selects a certain value of tuning parameter 4. In
scenario 1, where there is no weak confounder, the algorithm tends to select higher values for 4whichmeans
the procedure adaptively selects the important covariatesmostly based on the outcomemodel; while in scen-
ario 2, where X2 is a non-ignorable weak confounder, the algorithm puts more weights on the treatment
model by selecting smaller values for 4.

Table 1: Simulation results for scenarios 1 & 2. Bias, S.D. and MSE are for the treatment effect.

Method Bias S.D MSE Covg Bias S.D MSE Covg
Scenario 1. n = 300 n = 500
PMOE4=0.1 0.028 0.652 0.426 0.951 0.023 0.502 0.252 0.942
PMOE4=0.5 0.008 0.628 0.395 0.955 0.031 0.517 0.268 0.953
PMOE4=1 0.010 0.640 0.410 0.961 0.015 0.503 0.253 0.951
PMOE4=20 0.005 0.643 0.414 0.938 0.040 0.505 0.257 0.962
PMOE4=opt 0.012 0.633 0.400 0.943 0.010 0.503 0.253 0.949
Cred. Reg. 0.004 0.780 0.608 0.949 0.024 0.585 0.342 0.950
BAC (9=∞) 0.064 1.332 1.781 0.963 0.040 1.062 1.130 0.952
Belloni 0.201 2.065 4.305 0.897 0.015 1.414 1.999 0.902
CTMLE 0.050 0.874 0.766 0.797 0.033 0.625 0.392 0.841
Oracle 0.009 0.630 0.396 0.945 0.028 0.504 0.258 0.956
Scenario 2. n = 300 n = 500
PMOE4=0.1 0.039 0.648 0.422 0.933 0.028 0.490 0.241 0.948
PMOE4=0.5 0.070 0.665 0.447 0.942 0.005 0.512 0.262 0.957
PMOE4=1 0.132 0.685 0.486 0.956 0.025 0.539 0.292 0.934
PMOE4=20 0.878 0.654 1.198 0.948 0.898 0.504 1.065 0.144
PMOE4=opt 0.021 0.656 0.431 0.958 0.031 0.503 0.254 0.948
Cred. Reg. 0.010 0.765 0.582 0.955 0.027 0.595 0.355 0.946
Y-fit 0.710 0.598 0.862 0.102 0.818 0.453 0.875 0.058
BAC (9=∞) 0.070 1.242 1.542 0.963 0.008 1.011 1.022 0.966
Belloni 0.043 1.598 2.556 0.893 0.086 1.363 1.865 0.901
CTMLE 0.049 0.839 0.706 0.831 0.053 0.741 0.552 0.821
Oracle 0.026 0.657 0.432 0.953 0.034 0.500 0.251 0.947

S.D: empirical standard error; Covg: coverage of confidence intervals; CTMLE: collaborative-TMLE; Belloni: doubly robust
approach; Cred. Reg.: bayesian credible region; BAC: bayesian adjustment for confounding; Y-fit: penalized outcome model
via the LASSO; PMOE: proposed method; Oracle: true model.
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Figure 3: Proportion of times that the algorithm selects certain values of 4.
The left panel presents the first simulation scenario where there is no weak confounders while the right panel presents the
second simulation scenario where there is a weak non-ignorable confounder.

The variance of the estimator in the BAC is too large due to the inclusion of spurious variables that are not
related to the outcome. The PMOE and Cred. Reg. estimators, however, are unbiased and have smaller vari-
ance. In fact, PMOE has the lowest variance compared to BAC and Cred. Reg. methods regardless of the value
of 4. In the second scenario, the Y-fit estimator is biased because of under selecting the confounder X2. Also,
the bias of the proposed PMOE estimator increases by increasing 4 that is expected because as 4 increases the
proposed method should perform similarly to the outcome based variable selection methods such as Y-fit.
In general, doubly robust procedures, e.g., CTMLE and Belloni, are sensitive to the positivity assumption.
Specifically, when the estimated propensity score using the selected variables is close to boundaries, such
methods lead to unstable estimates and possibly under covered confidence intervals. Both CTMLE and Bel-
loni produce confidence intervals that are under covered, and CTMLE seems to be affected more seriously by
the issue discussed above. The main drawback of Belloni’s method is that it fails to eliminate variables that
only predict the treatment from the set of selected variables. As our results in Table 1 shows this deficiency
leads to inflating the standard error of the corresponding estimates. The estimator PMOEopt outperforms all
the other estimators and has similar performance as the oracle estimator which confirms that our method
successfully tunes 4.

Table 2 presents the average number of coefficients set to zero correctly and incorrectly under the second
scenario. There are four non-zero coefficients in our generative model so the number in the correct column
should be 96 and in the incorrect column should be 0. This table shows that Cred. Reg., and BAC are some-
what conservative and include some of the variables that should not be included which can be the source of

Table 2: Simulation results for scenario 2.

Method Correct Incorrect Correct Incorrect
n = 300 n = 500

PMOE4=0.1 95.91 0.03 95.97 0.01
PMOE4=0.5 96.00 0.12 96.00 0.03
PMOE4=1 96.00 0.22 96.00 0.08
PMOE4=20 96.00 0.89 96.00 0.87
PMOE4=opt 95.33 0.01 95.99 0.00
Cred. Reg. 92.62 0.00 92.83 0.00
BAC (9=∞) 91 0.00 91 0.00
Y-fit 96 0.90 96 0.92

Number of coefficients that are correctly or incorrectly set to zero. Cred. Reg.: bayesian credible region; BAC: bayesian
adjustment for confounding; Y-fit: penalized outcome model via the LASSO; PMOE: proposed method.
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the observed variance inflation in Table 1. This is mostly due to inclusion of variables that are predictors of
treatment model but have no association with the outcome. Also, increasing 4 in PMOE, increases the chance
of setting the coefficient of X2 to zero. The Y-fit row shows that this method is setting a nonzero coefficient to
zero (i.e., coefficient of X2) which explains the bias in Table 1. The tuned estimator PMOEopt has satisfactory
performance in ignoring covariates that are only predictors of the treatment mechanism and selecting all the
non-ignorable confounders. This, in fact, highlights the importance of our proposed method. We couldn’t
obtain the information needed in Table 2 using the available CTMLE’s and Belloni’s R codes, and thus, they
are omitted.

Simulation studies presented in Appendix D of the Supplementary Materials study the performance of
our covariate selection and estimation procedure when the covariates are non-orthogonal. Web Tables 2
and 3 presented in Appendix D show that the proposed method is still outperforming the other methods.
Moreover, in Appendix B of the Supplementary Materials, we study cases that the number of covariates is
larger than the sample size (r > n). We also investigate cases where either of the working models of the
propensity score or the outcome model is misspecified. Our results show that the proposed method performs
well, and outperforms Y-fit (Web Table 1).

5 Application: the effect of life expectancy on economic growth
In this section, we use the proposed method to analyse the cross-country economic growth data reported by
[47] and compare our findings with similar studies on the same data set. For illustration purposes, we focus
on a subset of the data which includes 88 countries and 35 variables. Additional details are provided in [48].
We are interested in selecting non-ignorable variables which confound the effect of life expectancy (exposure
variable) as a measure of population health on the average growth rate of gross domestic product per capita
in 1960-1996 (outcome).

The causal (or, at least, unconfounded) effect of life expectancy on economic growth is controversial.
[49] find no evidence of increasing life expectancy on economic growth while [50] shows that it might have a
positive effect. We dichotomize the life expectancy based on the observed median, which is 50 years. Hence,
the exposure variable D=1 if life expectancy is below 50 years in that country and 0 otherwise.

We applied our method described in Section 3 to selection important confounders. In our analysis, Y-fit
refers to the case where just the outcome model is penalized using LASSO to select the significant covari-
ates. We also implement the BAC with 9 = ∞ and Credible region with flat prior methods. Belloni’s and
CTMLE methods are also implemented. Our procedure selects 4 = 0.1 as the optimal value for this tuning
parameter. The estimates obtained by PMOE4=0.1, i.e., 0.617 with CI: (–1.27,1.361), and CTMLE, i.e., 0.719 with
CI: (0.512,0.927) are fairly close. However the standard error of the latter one is 70% smaller that the former,
which raises concern about the validity of the corresponding confidence intervals (see Table 1). Y-fit and
Belloni lead to the smallest and largest effects, respectively. Based on our simulation studies, we conjecture
that this is because Y-fit may ignore some of non-ignorable confounders and Belloni’s may include some
of the treatment predictors in the model. The BAC estimate, i.e., 0.524 with CI:(–0.228,1.286), is also close
to the PMOE4=0.1. The Credible region method leads to the second highest effect estimate of 0.820 with CI:
(–0.203,1.341).

Table 3 presents the list of variables that are selected at least by one of themethods. For brevity, we focus
on Y-fit, BAC, Cred. Reg., and PMOE. The proposed method selects 12 and 9 variables depending on the value
of 4 while Y-fit, BAC and Cred. Reg. select 7, 6 and 11 variables, respectively. Y-fit and PMOE4=5 are suscept-
ible to under selecting some of non-ignorable confounders that barely predict the outcome. Specifically, our
results suggest that Population Density 1960, and Initial Income are such non-ignorable confounders which
are known to be important confounders in the economics literature. Table 4 shows that ignoring these vari-
ables leads to a substantially different treatment effect estimates. Moreover, because there are evidence that
variables such as Oil producing Country, Land Area Near Navigable Water, and Nominal Government Share
may confound the effect of the life expectancy on the economic growth [48, 49, 53–56, 51, 52], PMOE4=0.1
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Table 3: The economic growth data: List of significant variables.

Variable Y-fit BAC Cred. Reg. PMOE PMOE PMOE
9=∞ 4 = opt = 0.1 4 = 0.5 4 = 5

Air Distance to Big Cities — — —
√ √ √

Ethnolinguistic Fractionalization
√ √ √ √ √ √

Fraction of Catholics — — —
√ √ √

Population Density 1960 — —
√ √ √

—
East Asian Dummy

√ √ √ √ √ √
Initial Income (Log GDP in 1960) —

√
—

√ √ √
Public Education Spending Share

√
—

√
— — —

Nominal Government Share — — —
√

— —
Investment Price

√ √ √
— — —

Land Area Near Navigable Water — —
√

— — —
Fraction GDP in Mining — —

√ √ √ √
Fraction Muslim — —

√
— — —

Political Rights —
√

—
√ √ √

Real Exchange Rate Distortions
√

— — — — —
Colony Dummy — —

√
— —

√
European Dummy

√
— — — — —

Latin American Dummy
√ √

—
√ √ √

Landlocked Country Dummy — —
√

— — —
Oil producing Country Dummy — — —

√
— —

Land Area Near Navigable Water — —
√ √

— —

Cred. Reg.: bayesian credible region; BAC: bayesian adjustment for confounding; Y-fit: penalized outcome model via the LASSO;
PMOE: proposed method.

seems to select more reasonable covariates than PMOE4=0.5. Despite the small discrepancies in the selected
variables between the BAC, Creg. Reg. and PMOE4=opt, these methods lead to the same conclusion and sug-
gest that while the life expectancy has positive effect on the average growth rate of gross domestic product
per capita in 1960-1996, the effect is not statistically significant.

To gain insight into the effect of parameter 4 on the selection results, we plot the estimated coefficients
! for different values of 4 for given tuning parameters. In Figure 4, the blue solid (dark dashed) lines cor-
respond to coefficients that their estimated value is (not) greater than 0.05 for the entire range of 4. Also,
displays (a)–(d) correspond to tuning parameter values + = 0.0, 0.0001, 0.001, and 0.01, respectively. Figure
4 shows that, for different values of 4, the selected set of covariates may vary slightly. For example, in Figure
4(c) where a moderate penalty function is imposed, the proposed method suggests to include Colony (the
dashed line) to the selected set for larger values of 4. Also, as the penalty becomes stronger, the estimated
coefficients become more stable across values of 4 (Figure 4(d)). This is because, for larger values of +, the
penalty function has a more dominant rule on the variable selection than 4.

Table 4 also reports the standard errors of the estimated effect of life expectancy using different penal-
ization methods. The standard error of the PMOE estimator is approximated using an idea similar to [46].
Specifically, we bootstrap the sample and in each bootstrap force the components of the penalized estimator
!̂ to zero whenever they are close to zero and estimate the treatment effect using the selected covariates, i.e.,
we define !̂† = !̂1(|̂!| > 1/

√
n). We utilize this thresholded bootstrap method to approximate the standard

error of the treatment effect. Although more investigation is required to validate the asymptotic properties of
this method, we only use this standard errors to shed light on the behavior of the penalized estimators. For
example, the estimators correspond to PMOE4=5 and Y-fit have the lowest standard errors that may support
the possibility of under-selecting important covariates. Our results suggests that although the effect of life
expectancy is positive, it is unlikely to be significant that is consistent with [49].
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Figure 4: Economic growth data: The plot of the estimated parameters using the proposed method given different values of
parameter 4.
The tuning parameter + is fixed at 0.0, 0.0001, 0.001, and 0.01 in plots (a), (b), (c) and (d), respectively. The blue solid (dark
dashed) lines correspond to coefficients that their estimated value is (not) greater than 0.05 for the entire range of 4.

Table 4: The economic growth data.

Method ATE S.D. CI (%95)
PMOE4=opt=0.1 0.617 0.372 (–0.127,1.361)
PMOE4=0.5 0.475 0.352 (–0.229,1.179)
PMOE4=5 0.454 0.340 (–0.226,1.134)
Cred. Reg. 0.820 0.386 (–0.203,1.341)
BAC (9=∞) 0.524 0.381 (–0.228,1.286)
Belloni 1.262 0.123 (0.999,1.523)
CTMLE 0.719 0.106 (0.512, 0.927)
Y-fit 0.352 0.334 (–0.111,1.345)

ATE: average treatment effect; CTMLE: collaborative-TMLE; Belloni: doubly robust approach; Cred. Reg.: bayesian credible
region; BAC: bayesian adjustment for confounding; Y-fit: penalized outcome model via the LASSO; PMOE: proposed method;
CI: confidence interval.

6 Discussion
We have established a two-step procedure for estimating an unconfounded treatment effect in high-
dimensional settings. First, we deal with the sparsity by penalizing a modified objective function which
considers both covariate-outcome and covariate-treatment associations. Then, the selected variables are
used to form a doubly robust regression estimator of the treatment effect by incorporating the propensity
score in the conditional expectation of the outcome. The selected covariates may be used in other causal
techniques as well as the proposed regression method. The proposed method may also be used to identify
candidate instrumental variables [57–60]. Specifically, one can penalize the treatment model first and record
the selected variables and then apply the proposedmethod and identify the candidate instrumental variables
as those that are selected by the treatment model but not the proposed method [23].
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As described in section 3.5, any covariate selection procedure which involves the outcome variable
affects the subsequent inference of the selected coefficients [61, 63, 65, 64, 62]. This is because the selec-
ted model itself is stochastic and it needs to be accounted for. [66] proposes a method to produce a valid
confidence interval for the coefficients of the selected model in the post-selection context. In our setting,
although we do not penalize the treatment effect, the randomness of the selected model affects the inference
about the causal effect parameter through confounding. Moreover, note that the oracle property of the pen-
alized regression estimators is a pointwise asymptotic feature and does not necessarily hold for all the points
in the parameter space [67, 68]. In this manuscript, we assume that the parameter dimension (r) is fixed
while the number of observation tends to infinity. One important extension to our work is to generalize the
framework to cases where the tuple (n, r) tends to infinity [69]. Analyzing the convergence of the estimated
vector of parameters in the more general setting requires an adaptation of restricted eigenvalue condition
[70] or restricted isometry property [71].
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