Abstract
Let G be a group,
References
[1] G. P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Transl. Math. Monogr. 59, American Mathematical Society, Providence, 1984. 10.1090/mmono/059Search in Google Scholar
[2] G. P. Egorychev, Method of coefficients: an algebraic characterization and recent applications, Advances in Combinatorial Mathematics, Springer, Berlin (2009), 1–30. 10.1007/978-3-642-03562-3_1Search in Google Scholar
[3] G. P. Egorychev, S. G. Kolesnikov and V. M. Leontiev, Two collection formulas, International Algebraic Conference dedicated to the 110th anniversary of Professor A. G. Kurosh (1908–1971), 2018, https://lomonosov-msu.ru/file/event/4623/eid4623\_attach\_e9e90e270f009df12cdd7d3771ec9d3395156bb4.pdf. Search in Google Scholar
[4] M. Hall, Jr., The Theory of Groups, The Macmillan, New York, 1959. 10.4159/harvard.9780674592711Search in Google Scholar
[5] P. Hall, A contribution to the theory of groups of prime-power order, Proc. Lond. Math. Soc. (2) 36 (1934), 29–95. 10.1112/plms/s2-36.1.29Search in Google Scholar
[6] E. F. Krause, On the collection process, Proc. Amer. Math. Soc. 15 (1964), 497–504. 10.1090/S0002-9939-1964-0165008-0Search in Google Scholar
[7] V. M. Leontiev, P. Hall’s collection formulas with some restrictions on commutator subgroup (in Russian), August Möbius Contest, 2016, http://www.moebiuscontest.ru/files/2016/leontiev.pdf. Search in Google Scholar
[8] A. I. Skopin, The collecting formula (in Russian), Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 46 (1974), 59–63. Search in Google Scholar
[9] A. I. Skopin, The Jacobi identity and P. Hall’s collection formula for transmetabelian groups of two types, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), 106–112. 10.1007/BF01100121Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston