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Finite groups with only small automorphism orbits

Alexander Bors

Communicated by Robert M. Guralnick

Abstract. We study finite groupsG such that the maximum length of an orbit of the natural
action of the automorphism group Aut.G/ onG is bounded from above by a constant. Our
main results are the following: Firstly, a finite groupG only admits Aut.G/-orbits of length
at most 3 if and only if G is cyclic of one of the orders 1, 2, 3, 4 or 6, or G is the Klein
four group or the symmetric group of degree 3. Secondly, there are infinitely many finite
(2-)groups G such that the maximum length of an Aut.G/-orbit on G is 8. Thirdly, the
order of a d -generated finite group G such that G only admits Aut.G/-orbits of length at
most c is explicitly bounded from above in terms of c and d . Fourthly, a finite group G
such that all Aut.G/-orbits on G are of length at most 23 is solvable.

1 Introduction

The study of structures X (in the model-theoretic sense, i.e., sets endowed with
operations and relations) that are “highly symmetrical”, expressed through tran-
sitivity assumptions on natural actions of the automorphism group Aut.X/, has
a long and rich history, during which various strong theories have been built and
beautiful results have been obtained. As examples, we mention vertex-transitive
graphs [2, Definition 4.2.2, p. 85], block-transitive designs [5, 6] and finite flag-
transitive projective planes [23].

When X is a group G, the assumption that Aut.G/ acts transitively on G is not
interesting, as only the trivial group satisfies it. Therefore, weaker conditions have
been proposed and studied, such as the following (assuming that G is finite):

(1) “Aut.G/ admits exactly c orbits on G” for some given, small constant c. For
c D 2, it is not difficult to show that this is equivalent toG being nontrivial and
elementary abelian. For results concerning c 2 ¹3; 4; 5; 6; 7º, see the papers
[1, 8, 15, 22] by various authors.

The author is supported by the Austrian Science Fund (FWF), project J4072-N32 “Affine maps on
finite groups”.
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(2) “Aut.G/ admits at least one orbit of length at least �jGj on G” for some
given constant � 2 .0; 1�. For example, it is known that if � > 18

19
, then G is

necessarily solvable [3, Theorem 1.1.2 (1)].

(3) “For each element order o in G, Aut.G/ acts transitively on elements of
order o in G”. In other words, Aut.G/ is “as transitive as possible” in view
of the fact that automorphisms must preserve the orders of elements. Such
finite groups G are called AT-groups and are studied extensively by Zhang
in [26].

In this paper, we are not concerned with such “highly homogeneous” finite
groups, but rather with finite groups G that are “highly inhomogeneous” in the
sense that they only admit small Aut.G/-orbits (i.e., of constantly bounded length).
There is also some relevant literature in this context, most notably the 1984 paper
[20] by Robinson and Wiegold, in which they characterize general (not necessar-
ily finite) such groups structurally [20, Theorem 1] and provide, for each prime p,
an example of an infinite p-group Gp of nilpotency class 2 and of exponent p2

such that Aut.Gp/ is uncountably infinite but only has orbits of length at most
p2.p � 1/2 on Gp [20, Proposition 3 and the remark after its proof]. Another
noteworthy result in this regard is that there are uncountable abelian groups with
only two automorphisms; see e.g. [9, Theorem II].

However, finite groups behave quite differently to infinite groups in many re-
gards, and by a result of Ledermann and B. H. Neumann [16], as the order of
a finite group G tends to1, so does the order of Aut.G/. In other words: “Large
finite groups have many automorphisms.” Based on this result, one might con-
jecture that even the following stronger assertion holds: “For finite groups G, as
jGj ! 1, the maximum length of an Aut.G/-orbit on G tends to 1 as well”.
This, however, is not true; see our Theorem 1.1 (2).

Throughout the rest of this paper, we denote by maol.G/ the maximum length
of an Aut.G/-orbit on the finite groupG. Moreover, exp and log denote the natural
exponential and logarithm function respectively (with base the Euler constant e).
We now state our main results.

Theorem 1.1. The following statements hold.

(1) For each finite group G, the following are equivalent:

(a) maol.G/ 6 3;

(b) G is isomorphic to one of the following: Z=mZ with m 2 ¹1; 2; 3; 4; 6º,
.Z=2Z/2, Sym.3/.

In particular, there are only finitely many finite groups G with maol.G/ 6 3.
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(2) There are infinitely many finite 2-groups G with maol.G/ D 8.

(3) For each pair .c; d/ of positive integers and every d -generated finite group G
with maol.G/ 6 c, we have that log jGj is at most

1:01624d � .A.c; d/C 1/ �

�
logA.c; d/

log 2
C 1

�
C
1

2

�
7C

log c
log 2

�
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dC 1
2
.7C

log c

log 2
/
�
.d

2
/C d

2 log 2
�.7C

log c

log 2
/ log c

�
:

(4) A finite group G with maol.G/ 6 23 is solvable.

Note that the constant 23 in Theorem 1.1 (4) is optimal, as maol.Alt.5// D 24.

2 Some preparations

In this section, we list some notation that will be used throughout the paper, and
we discuss a few basic facts concerning power-commutator presentations, central
automorphisms and finite groups without nontrivial solvable normal subgroups.

2.1 Notation

We denote by N the set of natural numbers (including 0) and by NC the set of
positive integers. For a prime power q, the notation Fq stands for the finite field
with q elements. The identity function on a set X is denoted by idX . The Euler
totient function will be denoted by � throughout and is to be distinguished from
the symbol ' reserved for group homomorphisms. The kernel of a group homo-
morphism ' is denoted by ker.'/, and the order of an element g of a group G by
ord.g/, sometimes also by ordG.g/ for greater clarity. When g and h are elements
of a group G, then we denote by Œg; h�´ g�1h�1gh the commutator of g and h,
and for subsets X; Y � G, the notation ŒX; Y � stands for the subgroup of G gen-
erated by the commutators Œx; y� with x 2 X and y 2 Y . We always denote the
quotient of a group G by a normal subgroup N by G=N and reserve the notation
X n Y for the set-theoretic difference of the sets X and Y . The index of a sub-
group H in a group G is written jG W H j. If x1; : : : ; xn are pairwise distinct vari-
ables, then F.x1; : : : ; xn/ stands for the free group generated by x1; : : : ; xn. When
A is an abelian group, then the semidirect product A Ì Z=2Z, where the generator
of Z=2Z acts on A by inversion, is called the generalized dihedral group over A
and will be denoted by Dih.A/. The symmetric group on a set X is denoted by
Sym.X/, and for n 2 NC, the symmetric and alternating group of degree n are
written Sym.n/ and Alt.n/ respectively. All group actions discussed in this paper
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are on the right, and when 'WG ! Sym.X/ is an action of the group G on the
set X , then for g 2 G and x 2 X , we write xg shorthand for '.g/.x/, and we
write xG for the full orbit of x under G. The exponent (i.e., least common mul-
tiple of the element orders) of a finite group G is denoted by Exp.G/ (to be dis-
tinguished from the notation exp reserved for the natural exponential function),
and the smallest size of a generating subset of G is denoted by d.G/. The nota-
tion Rad.G/ is used for the solvable radical (largest solvable normal subgroup) of
a finite group G, and Soc.G/ is used for the socle (product of all the minimal non-
trivial normal subgroups) of G; see also Subsection 2.3. The center of a group G
is denoted by �G, and G0´ ŒG;G� denotes the commutator subgroup of G. The
inner automorphism group of a groupG is written Inn.G/. IfG andH are groups,
then End.G/ denotes the set (monoid) of endomorphisms of G, and Hom.G;H/
denotes the set of group homomorphisms G ! H .

2.2 Power-commutator presentations of finite solvable groups

A group G is called polycyclic if and only if it admits a polycyclic series, that is,
a subnormal series G D G1 D G2 D � � � D Gn D GnC1 D ¹1Gº such that all the
factors Gi=GiC1, with i 2 ¹1; : : : ; nº, are cyclic. A generating tuple .g1; : : : ; gn/
of G is called a polycyclic generating sequence of G if and only if, setting

Gi ´ hgi ; giC1; : : : ; gni for i D 1; : : : ; nC 1;

the subgroup series G D G1 > G2 > � � � > Gn > GnC1 D ¹1Gº is a polycyclic
series in G. Clearly, every polycyclic group is solvable, and all finite solvable
groups are polycyclic. If G is a polycyclic group and .g1; : : : ; gn/ is a polycyclic
generating sequence of G, then with respect to the generating tuple .g1; : : : ; gn/,
G can be represented by a so-called polycyclic presentation; see e.g. [13, Theo-
rem 8.8, p. 279]. For our purposes, it will be more convenient to work with a variant
of polycyclic presentations called power-commutator presentations. Assume that
G is a finite polycyclic group (the finiteness assumption is not essential, but makes
the situation a bit simpler) and that .g1; : : : ; gn/ is a polycyclic generating se-
quence of G. Then with respect to the generating tuple .g1; : : : ; gn/, the group G
has a power-commutator presentation of the form

G D hx1; : : : ; xn j x
ei

i D x
ai;iC1

iC1 � � � x
ai;n
n for i D 1; : : : ; nI

Œxi ; xj � D x
bi;j;iC1

iC1 � � � x
bi;j;n

n for 1 6 i < j 6 ni;

where, for i D 1; : : : ; n, the formal generator xi corresponds to the group element
gi , and ei is the so-called relative order of gi , i.e., the order of

giGiC1 D gi hxiC1; : : : ; xni in G=GiC1:
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Moreover, the exponents ai;k for i D 1; : : : ; n, k D i C 1; : : : ; n, and the expo-
nents bi;j;k for 1 6 i < j 6 n, k D i C 1; : : : ; n are integers in ¹0; 1; : : : ; ek � 1º.
For more details on polycyclic groups, see [13, Chapter 8].

2.3 Central automorphisms

If G is a group and f is a group homomorphism G ! �G, then it is easy to check
that the function 'f WG ! G, g 7! gf .g/, is a group endomorphism of G, and
that conversely, every endomorphism of G which leaves each coset of �G in G
set-wise invariant is of this form. Such endomorphisms of G are called central.
Moreover, a central endomorphism 'f of a group G has trivial kernel if and only
if the neutral element 1G is the only element of �G which is mapped to its own
inverse by f . In the case of finite groups G, the central endomorphisms of G
with trivial kernel are the central automorphisms of G, which form a subgroup of
Aut.G/ denoted by Autcent.G/.

2.4 Finite semisimple groups

Throughout this paper, the term “semisimple group” denotes a group without non-
trivial solvable normal subgroups; for finite groupsG, this is equivalent to the con-
dition that the solvable radical Rad.G/ is trivial. Note that since the class of solv-
able groups is closed under group extensions, for every finite groupG, the quotient
G=Rad.G/ is semisimple. Moreover, for finite semisimple groupsH , the structure
ofH is controlled by the socle Soc.H/. More precisely, Soc.H/ is a direct product
of nonabelian finite simple groups, and H acts faithfully on Soc.H/ via conjuga-
tion, so that, up to isomorphism,H may be viewed as a subgroup of Aut.Soc.H//
containing Inn.Soc.H//; see also [19, Result 3.3.18, p. 89].

3 Finite groups G with maol.G/ 6 3

This section is concerned with the proof of Theorem 1.1 (1). We will go through
the three cases maol.G/ D 1; 2; 3 separately, but first, we prove the following sim-
ple lemma, which will be used frequently.

Lemma 3.1. The following hold.

(1) Let G1; : : : ; Gn be finite groups. Then

maol
� nY
kD1

Gk

�
>

nY
kD1

maol.Gk/ > max¹maol.Gk/ j k D 1; : : : ; nº:
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(2) For every finite abelian group G, we have maol.G/ > �.Exp.G//, where �
denotes the Euler totient function.

(3) Let G be a finite nilpotent group. Then maol.G/ D
Q
p maol.Gp/ where the

index p ranges over the primes and Gp denotes the (unique) Sylow p-sub-
group of G.

Proof. (1) This holds since
Qn
kD1Aut.Gk/ embeds into Aut.

Qn
kD1Gk/ via “com-

ponent-wise mapping”.
(2) First, note that if G is cyclic, then maol.G/ D �.Exp.G// as

�.Exp.G// D �.jGj/

is just the number of generators of G. If G is a general finite abelian group, then
by the structure theorem for finite abelian groups, G has a cyclic direct factor of
order Exp.G/, and the asserted inequality follows by statement (1).

(3) This is clear since Aut.G/ is isomorphic to the direct product
Q
p Aut.Gp/

via “component-wise mapping”.

3.1 Finite groups G with maol.G/ D 1

The following proposition, whose proof is given for completeness, is easy and well
known.

Proposition 3.1.1. Let G be a finite group. The following are equivalent.

(1) maol.G/ D 1.

(2) Aut.G/ is trivial.

(3) G Š Z=mZ with m 2 ¹1; 2º.

Proof. “(1)) (2)” Assume that maol.G/ D 1, and let ˛ 2 Aut.G/. Then for each
g 2 G, we have g˛ 2 gAut.G/ D ¹gº so that g˛ D g, ˛ D idG . Since ˛ 2 Aut.G/
was arbitrary, it follows that Aut.G/ D ¹idGº, as required.

“(2)) (3)” Assume that Aut.G/ is trivial. Since G=�G Š Inn.G/ 6 Aut.G/,
it follows that G D �G, i.e., G is abelian. Writing G additively, we find that the
inversion on G, �idG , is an automorphism of G, and so �idG D idG , i.e., G is
of exponent 2, and thus G Š .Z=2Z/d for some d 2 N. But if d > 2, then by
Lemma 3.1 (1),

maol.G/ > maol..Z=2Z/2/ D 3 > 1

so that Aut.G/ must be nontrivial, a contradiction. Hence d 2 ¹0; 1º, as required.
“(3)) (1)” Assume that G is of order at most 2. Then since Aut.G/ is con-

tained in a point stabilizer in Sym.G/, every element of G must be fixed by all
permutations in Aut.G/, whence maol.G/ D 1, as required.
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3.2 Finite groups G with maol.G/ D 2

These groups are less trivial to deal with than the ones with maol-value 1. Note that
if G is a finite group with maol.G/ D 2, then ˛2 D idG for every automorphism
˛ of G. Hence Aut.G/ is of exponent 2, i.e., Aut.G/ is an elementary abelian
2-group. We will need a few results on finite groups with abelian automorphism
group.

Definition 3.2.1. A nonabelian finite group with abelian automorphism group is
called a Miller group.

This terminology, taken from the survey paper [14], is in honor of G. A. Miller,
who gave the first example of such a group (of order 64) in 1913 [17] (see also [14,
Section 3, (3.1)]). Since then, a rich theory of Miller groups with many beautiful
results and examples has emerged. We will need the following.

Proposition 3.2.2. Let G be a Miller group. Then the following hold.

(1) G is nilpotent of class 2.

(2) Every Sylow subgroup of G has abelian automorphism group.

(3) If G is a p-group for some prime p and jG0j > 2, then G0 is not cyclic.

Proof. (1) This holds since for every group H , being nilpotent of class at most 2
is equivalent to the commutativity of Inn.H/; see also [14, Section 1].

(2) This is clear since Aut.G/ is the direct product of the automorphism groups
of the Sylow subgroups of G (see also the proof of Lemma 3.1 (3)).

(3) By [14, statement (4) at the end of Section 1], this holds if one addition-
ally assumes that G is purely nonabelian, i.e., G has no nontrivial abelian direct
factor. However, this additional assumption can be dropped, for if G is not purely
nonabelian, then G D G0 � A, where G0 is purely nonabelian and A is abelian.
Since Aut.G0/ embeds into Aut.G/, we have thatG0 is also a Miller p-group, and
jG0j D jG00j > 2, so G00 is not cyclic. But G0 Š G00, whence G0 is not cyclic.

We can now prove the following lemma, which will be used in our proof of the
classification of finite groups G with maol.G/ D 2 (see Proposition 3.2.4 below).

Lemma 3.2.3. LetG be a finite group with maol.G/ D 2. Then the following hold.

(1) If G is abelian, then G Š Z=mZ with m 2 ¹3; 4; 6º.

(2) If G is nonabelian, then

(a) G is a Miller 2-group,
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(b) �G is cyclic,

(c) jG0j D 2,

(d) j�Gj > 2,

(e) G=G0 is an elementary abelian 2-group.

Proof. (1) By Lemma 3.1 (3), maol.G/D
Q
pmaol.Gp/, where the index p ranges

over the primes and Gp denotes the Sylow p-subgroup of G. Moreover, if Gp is
nontrivial, then by Lemma 3.1 (2), maol.Gp/ > �.Exp.Gp// > p � 1. It follows
that Gp is trivial unless p 2 ¹2; 3º, i.e., G is a finite abelian ¹2; 3º-group of order
at least 3. Consider the following cases.

Case (1): G is a 2-group. By Lemma 3.1 (2), maol.G/ > �.Exp.G//, and thus
Exp.G/ 6 4. But Exp.G/ D 2 is impossible since then G Š .Z=2Z/d for some
d > 2, and thus maol.G/ > maol..Z=2Z/2/ D 3 by Lemma 3.1 (1). Hence we
have Exp.G/ D 4. IfG has more than one direct factor Z=4Z in its decomposition
into primary cyclic groups, by Lemma 3.1 (1), maol.G/ > maol..Z=4Z/2/ D 12,
a contradiction. HenceG Š .Z=2Z/d � Z=4Z for some d 2 N. If d > 1, then by
Lemma 3.1 (1), maol.G/ > maol.Z=2Z � Z=4Z/ D 4, a contradiction. It follows
that G Š Z=4Z.

Case (2):G is a 3-group. Again, maol.G/ > �.Exp.G// by Lemma 3.1 (2), which
implies that Exp.G/ D 3, whence G Š .Z=3Z/d for some d 2 NC. If d > 2,
then by Lemma 3.1 (1), maol.G/ > maol..Z=3Z/2/ D 8, a contradiction. Hence
G Š Z=3Z.

Case (3):G is neither a 2- nor a 3-group. ThenG D G2 �G3 withGp a nontrivial
abelian p-group for p 2 ¹2; 3º. By Lemma 3.1 (3), we have

2 D maol.G/ D maol.G2/ �maol.G3/:

Hence .maol.G2/;maol.G3// is either .2; 1/ or .1; 2/. But the former is impossi-
ble since by Proposition 3.1.1, there are no nontrivial finite 3-groups with maol-
value 1. Hence maol.G2/ D 1 and maol.G3/ D 2. It follows by Proposition 3.1.1
and the previous case that G2 Š Z=2Z and G3 Š Z=3Z, whence G Š Z=6Z.

(2) (a) As noted at the beginning of this subsection, Aut.G/ is an elementary
abelian 2-group, so G is certainly a Miller group. By Proposition 3.2.2 (1), G
is nilpotent, so we can write G D

Q
p Gp, where the index p ranges over the

primes and Gp denotes the Sylow p-subgroup of G. By Lemma 3.1 (3), we have
2 D maol.G/ D

Q
p maol.Gp/, and so maol.Gp/ D 2 for exactly one prime p,

and maol.G`/ D 1 for all primes ` ¤ p. We claim that G is a p-group. Indeed,
otherwise, in view of Proposition 3.1.1, jGj has exactly two distinct prime divi-
sors, and more precisely, p > 2 and �.G/ D ¹2; pº, withG2 Š Z=2Z. SinceG is
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nonabelian, it follows that Gp is nonabelian, whence Gp has an (inner) automor-
phism of order p, which implies that maol.G/ > maol.Gp/ > p > 2, a contradic-
tion. SoG is indeed a p-group for some prime p, and again, sinceG is nonabelian,
2 D maol.G/ > p, whence p D 2. This concludes the proof of statement (2) (a).

(2) (b) Assume that �G is not cyclic so that we have an embedding

�W .Z=2Z/2 ,! �G:

As G is of nilpotency class 2 (by Proposition 3.2.2 (1)), the central quotient G=�G
is an abelian 2-group, whence we also have a projection � WG=�G� Z=2Z.
There are four distinct homomorphisms 'WZ=2Z! .Z=2Z/2, and by composi-
tion, we get four distinct homomorphisms

f WG
can.
� G=�G

�
� Z=2Z

'
! .Z=2Z/2

�
,! �G:

For each such homomorphism f WG ! �G, we have that �G 6 ker.f /, and so
the neutral element 1G is the only element of �G inverted by f . We may thus
consider the associated central automorphism f̨ WG ! G, g 7! gf .g/. Now fix
an element g 2 G outside the (index 2) kernel of the composition

G
can.
� G=�G

�
� Z=2Z:

Then the images of g under the four mentioned central automorphisms f̨ are
pairwise distinct, which implies that maol.G/ > 4, a contradiction. This concludes
the proof of statement (2) (b).

(2) (c) Recall that by Proposition 3.2.2 (1), G is nilpotent of class 2, whence
G0 6 �G, and so G0 is cyclic by statement (2) (b). Proposition 3.2.2 (3) now im-
plies that jG0j D 2, as required.

(2) (d) Assume, aiming for a contradiction, that j�Gj D 2. Then, since G is nil-
potent of class 2 by Proposition 3.2.2 (1), we have G0 D �G Š Z=2Z so that G
is an extraspecial 2-group. By [25, Theorem 1 (c)], the induced action of Aut.G/
on G=�G Š F2n2 corresponds to the one of an orthogonal group O�2n.2/, for some
� 2 ¹C;�º (depending on the isomorphism type of G). In any case, this implies
that 3 j jAut.G/j so that Aut.G/ contains an element of order 3 by Cauchy’s the-
orem, and thus maol.G/ > 3, a contradiction. This concludes the proof of state-
ment (2) (d).

(2) (e) Assume, aiming for a contradiction, thatG=G0 is not an elementary abel-
ian 2-group. Then we have a projection � WG=G0� Z=4Z. There are four endo-
morphisms ' of Z=4Z, and by composition, we obtain four distinct homomor-
phisms

f WG
can.
� G=G0

�
� Z=4Z

'
! Z=4Z ,! �G:
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By the three facts that G0 is nontrivial, G0 6 �G and �G is a cyclic 2-group, each
such homomorphism f WG ! �G has the property that any nontrivial element of
�G is mapped under f to an element of smaller order; in particular, 1G is the only
element of �G which is inverted by f . It follows that each such homomorphism f

induces a central automorphism f̨ WG ! G, g 7! gf .g/, and any element g 2 G
which gets mapped under the composition

G
can.
� G=G0

�
� Z=4Z

to a generator of Z=4Z assumes four distinct images under these central auto-
morphisms f̨ . It follows that maol.G/ > 4, a contradiction, which concludes the
proof of statement (2) (e).

We are now ready to classify the finite groups G with maol.G/ D 2.

Proposition 3.2.4. Let G be a finite group. The following are equivalent.

(1) maol.G/ D 2.

(2) G Š Z=mZ for some m 2 ¹3; 4; 6º.

Proof. The implication “(2)) (1)” is easy, so we focus on proving “(1)) (2)”.
By Lemma 3.2.3 (1), it suffices to show that G is abelian. So, working toward
a contradiction, let us assume that G is nonabelian. Then we can use all the struc-
tural information on G displayed in Lemma 3.2.3 (2).

Write G=G0 Š .Z=2Z/d with d 2 NC. Note that d > 3, as otherwise,

jGj D jG0j � jG=G0j 6 2 � 4 D 8;

which implies j�Gj D 2, contradicting Lemma 3.2.3 (2) (d). Let us call a d -tuple
.g1; : : : ; gd / 2 G

d a standard tuple in G if and only if it projects to an F2-basis
of G=G0 under the canonical projection G� G=G0 (we remark that this notion
of a “standard tuple” will also appear in the next subsection, Subsection 3.3, and
it will be introduced and studied in greater generality in Section 5).

Since jG0j D 2, the number of standard tuples in G is exactly

2d �

d�1Y
iD0

.2d � 2i /:

For each standard tuple .g1; : : : ; gd / inG, the associated power-commutator tuple
is defined to be the following .d C

�
d
2

�
/-tuple with entries in G0:

.g21; g
2
2; : : : ; g

2
d ; Œg1; g2�; Œg1; g3�; : : : ; Œg1; gd �;

Œg2; g3�; Œg2; g4�; : : : ; Œg2; gd �; : : : ; Œgd�1; gd �/:
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We say that two standard tuples in G are equivalent if and only if they have
the same power-commutator tuple. Now, if c denotes the unique nontrivial ele-
ment of G0, then for every standard tuple .g1; : : : ; gd / in G, the .d C 1/-tuple
.g1; : : : ; gd ; c/ is a polycyclic generating sequence of G. Further, if .h1; : : : ; hd /
is a standard tuple in G which is equivalent to .g1; : : : ; gd /, then the two poly-
cyclic generating sequences .g1; : : : ; gd ; c/ and .h1; : : : ; hd ; c/ of G induce the
same power-commutator presentation of G (this is because since c is central in G,
one has Œgi ; c� D Œhi ; c� D 1 for all i D 1; : : : ; d ) so that there exists an automor-
phism ˛ of G with g˛i D hi for i D 1; : : : ; d . This shows that equivalent standard
tuples lie in the same orbit of the component-wise action of Aut.G/ on Gd .

Note that since jG0j D 2, the number of distinct power-commutator tuples of
standard tuples inG, and thus the number of equivalence classes of standard tuples
in G, is at most 2dC.

d
2
/. It follows that there is an equivalence class of standard

tuples in G which is of size at least

2d �
Qd�1
iD0 .2

d � 2i /

2dC.
d
2
/

D

Qd�1
iD0 .2

d � 2i /

2.
d
2
/

D
20C1C2C���Cd�1 �

Qd�1
iD0 .2

d�i � 1/

2.
d
2
/

D

d�1Y
iD0

.2d�i � 1/ D

dY
jD1

.2j � 1/:

In particular, the component-wise action of Aut.G/ on Gd has an orbit of length
at least

Qd
jD1 .2

j � 1/. However, since maol.G/ D 2, no orbit of the action of
Aut.G/ on Gd can be of length larger than 2d . It follows that

2d >
dY
jD1

.2j � 1/;

which does not hold for any d > 3, a contradiction.

3.3 Finite groups G with maol.G/ D 3

We begin by proving some properties of finite groups G with maol.G/ D 3 which
will be crucial for the subsequent discussion.

Lemma 3.3.1. LetG be a finite group with maol.G/ D 3. Then the following hold.

(1) If G is abelian, then G Š .Z=2Z/2.
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(2) If G is nonabelian, then the following hold:

(a) the set of element orders of Aut.G/ is contained in ¹1; 2; 3º (in particular,
Aut.G/ is solvable);

(b) G is a ¹2; 3º-group (in particular, G is solvable).

Proof. (1) Write G D
Q
p Gp, where p ranges over the primes and Gp denotes

the Sylow p-subgroup of G. If Gp is nontrivial for some prime p > 5, then by
Lemma 3.1 (1) (2),

maol.G/ > maol.Gp/ > �.p/ D p � 1 > 4 > 3;

a contradiction. Hence G D G2 �G3, and by Lemma 3.1 (3), we have

3 D maol.G/ D maol.G2/ �maol.G3/:

We distinguish two cases.
Case (1): maol.G2/ D 3 and maol.G3/ D 1. Then by Proposition 3.1.1, G3 is
trivial, and so G is an abelian 2-group. By Lemma 3.1 (2), we have

3 D maol.G/ > �.Exp.G//;

which implies that Exp.G/ 2 ¹2; 4º. Distinguish two subcases.
Subcase (a): Exp.G/ D 2. ThenG Š .Z=2Z/d for some positive integer d , and

we have 3 D maol.G/ D 2d � 1. It follows that d D 2, i.e., G Š .Z=2Z/2.
Subcase (b): Exp.G/ D 4. ThenG Š .Z=2Z/d1 � .Z=4Z/d2 for some d1 2 N

and some d2 2 NC. If d2 > 2, then by Lemma 3.1 (1),

maol.G/ > maol..Z=4Z/2/ D 12 > 3;

a contradiction. Hence d2 D 1. If d1 D 0, then

maol.G/ D maol.Z=4Z/ D 2 < 3;

a contradiction. Hence d1 > 1, which implies by Lemma 3.1 (1) that

maol.G/ > maol.Z=2Z � Z=4Z/ D 4 > 3;

another contradiction.
Case (2): maol.G2/ D 1 and maol.G3/ D 3. By Lemma 3.1 (2),

3 D maol.G3/ > �.Exp.G3//;

whence Exp.G3/ D 3. It follows that G3 Š .Z=3Z/d for some positive integer d ,
and therefore maol.G3/ D 3d � 1, which is never equal to 3, a contradiction.
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(2) (a) The “in particular” follows from Burnside’s paqb-theorem, so we focus
on proving the main assertion. Let ˛ be an automorphism of G. For each positive
integer k, consider the subgroup

CG.˛k/ D ¹g 2 G j g˛
k

D gº 6 G:

Since maol.G/ D 3, all cycles of ˛ onG are of one of the lengths 1, 2 or 3. Equiv-
alently, G D CG.˛2/ [ CG.˛3/. But no finite group is a union of two proper sub-
groups (see e.g. [19, Exercise 1.3.9, p. 17]). It follows that either CG.˛2/ D G or
CG.˛3/ D G, and accordingly, that the order of ˛ divides 2 or 3, which concludes
the proof of statement (2) (a).

(2) (b) By statement (2) (a), Aut.G/ is solvable. It follows that G, being an
extension of the solvable group Inn.G/ by the abelian group �G, is also solvable.
By assumption, all conjugacy classes in G are of one of the lengths 1, 2 or 3, and
thus all element centralizers in G are of one of the indices 1, 2 or 3. It follows
that the central quotient G=�G is a ¹2; 3º-group. Since G is solvable, G has a Hall
¹2; 3º0-subgroup G¹2;3º0 , which must be central and thus normal (or, equivalently,
unique). Moreover, G has a Hall ¹2; 3º-subgroup G¹2;3º, which, being centralized
by G¹2;3º0 , is also normal, and so we have G D G¹2;3º �G¹2;3º0 . If G¹2;3º0 was
nontrivial, it would follow by Lemma 3.1 (2) that

3 D maol.G/ > maol.G¹2;3º0/ > �.Exp.G¹2;3º0// > 4;

a contradiction. Hence G D G¹2;3º, concluding our proof of statement (2) (b).

Note that according to Theorem 1.1 (1), the only nonabelian finite groupG with
maol.G/ D 3 is G D Sym.3/, for which the set of orders of inner automorphisms
is ¹1; 2; 3º. It is precisely this property which we will show next for all nonabelian
finite groups G with maol.G/ D 3.

Lemma 3.3.2. Let G be a nonabelian finite group with maol.G/ D 3. Then the set
of orders of inner automorphisms of G is ¹1; 2; 3º (and hence the set of orders of
all automorphisms of G is also ¹1; 2; 3º).

Proof. The “and hence” follows from Lemma 3.3.1 (2) (a), so we focus on prov-
ing the main assertion. Note that by Lemma 3.3.1 (2) (a), the set of orders of inner
automorphisms of G is contained in ¹1; 2; 3º, whence it suffices to show that
Exp.Inn.G// can neither be 2 nor 3. Assume otherwise. Then Inn.G/ D G=�G is
of prime-power order, and thus G is nilpotent. Hence, by Lemma 3.3.1 (2) (b), we
haveG D G2 �G3, whereGp denotes the Sylow p-subgroup ofG for p 2 ¹2; 3º.
By Lemma 3.1 (3), it follows that 3 D maol.G/ D maol.G2/ �maol.G3/. Distin-
guish two cases.
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Case (1): maol.G2/ D 3 and maol.G3/ D 1. Then by Proposition 3.1.1, G3 is
trivial, soG is a nonabelian 2-group with maol.G/ D 3. All non-central conjugacy
classes in G are of length 2 and are Aut.G/-orbits (otherwise, there would be an
Aut.G/-orbit of length at least 2 � 2 D 4 > 3). It follows that for any ˛ 2 Aut.G/,
the subgroup

CG.˛2/ D ¹g 2 G j g˛
2

D gº

contains the generating set G n �G, and thus CG.˛2/ D G. Therefore, ˛2 D idG ,
whence Exp.Aut.G// D 2. However, we are assuming that maol.G/ D 3, and so
by the orbit-stabilizer theorem, 3 j jAut.G/j so that Aut.G/ contains an order 3
element by Cauchy’s theorem, a contradiction.

Case (2): maol.G2/ D 1 and maol.G3/ D 3. Then by Proposition 3.1.1, G2 is
abelian, whence G3 is a nonabelian 3-group with maol.G3/ D 3. Observe that
all non-central conjugacy classes in G3 are of length 3 and are Aut.G3/-orbits.
Since the Sylow 3-subgroup of Sym.3/ is abelian, it follows that any two inner
automorphisms of G3 commute on G3 n �G3, and thus on G3, so that Inn.G3/ is
abelian, i.e.,G3 is nilpotent of class 2. We now list some more structural properties
of G3, in the spirit of Lemma 3.2.3 (2).

� �G3 is cyclic. Indeed, otherwise, a suitable non-central element of G3 would
have at least jHom.Z=3Z; .Z=3Z/2/j D 9 distinct images under central auto-
morphisms of G3, a contradiction.

� j�G3j > 3. Indeed, otherwise, G3 would be an extraspecial 3-group. If we have
jG3j D 3

1C2, then either

– G D ha; b; c j a3 D b3 D c3 D Œa; b� D Œa; c� D 1; bc D abi, and it is easy
to check that each of the assignments a 7! a, b 7! b, c 7! ak1bk2c with
k1; k2 2 ¹0; 1; 2º extends to an automorphism ofG so that maol.G/ > 9 > 3,
a contradiction, or

– G D ha; b j a9 D b3 D 1; ab D a4i, and it is easy to check that each of the
assignments a 7! ak , b 7! b with k 2 ¹1; : : : ; 9º and 3 − k extends to an
automorphism of G so that maol.G/ > �.9/ D 6 > 3, a contradiction.

If jG3j D 31C2n with n > 2, then by [25, Theorem 1] (and the fact that the
symplectic group Sp2n.q/ 6 GL2n.q/ acts transitively on F2nq n ¹0º, which can
be derived from Witt’s theorem), Aut.G/ has an orbit of length at least

32n�2 � 1 > 8 > 3

on G, a contradiction.
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� G3=�G3 is an elementary abelian 3-group. Indeed, otherwise, a suitable non-
central element of G3 would have at least jEnd.Z=9Z/j D 9 distinct images
under central automorphisms of G3, a contradiction.

� G03 Š Z=3Z. Since G3 is nilpotent of class 2, G03 6 �G3, whence G03 is cyclic.
Moreover, since G3 is nilpotent of class 2 (which implies Œxe; yf � D Œx; y�ef

for all x; y 2 G3 and all e; f 2 Z) and Exp.G3=�G3/ D 3, the exponent of G03
must be 3 as well.

� G3=G
0
3 is an elementary abelian 3-group. Indeed, otherwise, a suitable element

of G3 outside G03 would have at least jEnd.Z=9Z/j D 9 distinct images under
central automorphisms of G3 (note that any homomorphism f WG3 ! �G3 has
the property that 1G3

is the only element of �G3 mapped to its inverse by f since
ker.f / contains G03, which is a nontrivial subgroup of the cyclic 3-group �G3),
a contradiction.

We can now repeat the “standard tuples” argument from the proof of Proposi-
tion 3.2.4 almost verbatim (only needing to replace the prime 2 by 3) and find that
with G3=G03 Š .Z=3Z/

d , we necessarily have

3d >
dY
jD1

.3j � 1/;

which implies that d D 1 and thus jG3j D 32, contradicting thatG3 is nonabelian.

We are now ready to prove the main result of this subsection.

Proposition 3.3.3. Let G be a finite group. The following are equivalent.

(1) maol.G/ D 3.

(2) G is isomorphic to .Z=2Z/2 or to Sym.3/.

Proof. The implication “(2)) (1)” is easy, so we focus on proving “(1)) (2)”.
So, assume that G is a finite group with maol.G/ D 3. If G is abelian, then
G Š .Z=2Z/2 by Lemma 3.3.1 (1). We may thus assume that G is nonabelian
and need to show that G Š Sym.3/.

By Lemma 3.3.2, the set of element orders of Inn.G/ is ¹1; 2; 3º, and hence by
[4, Theorem], Inn.G/ Š G=�G is one of the following:

� the Frobenius group .Z=3Z/d Ì Z=2Z D Dih..Z=3Z/d / for some d 2 NC,

� the Frobenius group .Z=2Z/2d Ì Z=3Z for some d 2 NC.
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Note that the maximum conjugacy class length in Inn.G/ cannot exceed the max-
imum conjugacy class length in G, which is at most 3. But in the Frobenius group
.Z=2Z/2d Ì Z=3Z, the length of the conjugacy class of any generator of the
Frobenius complement Z=3Z is 22d > 4 > 3. Hence Inn.G/ Š Dih..Z=3Z/d /,
which has a conjugacy class of length 3d , so that d D 1 and thus

G=�G Š Inn.G/ Š Dih.Z=3Z/ Š Sym.3/:

Next, we claim that �G is a 3-group. Indeed, otherwise, by Lemma 3.3.1 (2) (b),
there is an embedding Z=2Z

�
,! �G. Moreover, we have a finite sequence of group

homomorphisms
G

can.
� G=�G

�
! Sym.3/

�
� Z=2Z;

and through composition, we obtain a nontrivial homomorphism G
f
! �G with

nontrivial associated central automorphism f̨ . Now, let

g 2 G n ker
�
G

can.
� G=�G

�
! Sym.3/

�
� Z=2Z

�
:

Then the conjugacy class length of the image of g inG=�G Š Sym.3/ is 3, whence
gG meets three distinct cosets of �G inG. Moreover, g f̨ is an element in the same
central coset as g, but distinct from g itself. It follows that jgG j > 2 � 3 D 6 > 3,
a contradiction. This concludes our argument that �G is a 3-group.

It now follows that G has a normal, abelian Sylow 3-subgroup G3, and we have
G D G3 Ì Z=2Z, where the generator h of Z=2Z centralizes the index 3 subgroup
�G of G3. Let g 2 G3 n �G. Then, writing G3 additively, we have gh D �g C z
for some z 2 �G. It follows that

3g D .3g/h D 3gh D 3.�g C z/ D �3g C 3z;

and thus 3.2g � z/ D 0. Through replacing g by 2g � z, we may assume without
loss of generality that ord.g/ D 3. Recall that gh D �g C z for some z 2 �G,
and note that ord.z/ j 3 (otherwise, gh would have order larger than 3 D ord.g/,
a contradiction). Set g0´ g C z. Then

.g0/h D gh C zh D �g C z C z D �g � z D �g0:

Hence, through replacing g by g0, we may assume without loss of generality that
gh D g�1. This entails that

G D G3 ÌZ=2ZD .�G � hgi/ÌZ=2ZD �G � .hgiÌZ=2Z/Š �G � Sym.3/:

Therefore, if �G is nontrivial, then by Lemma 3.1 (2),

maol.�G/ > �.Exp.�G// > �.3/ D 2;
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and thus, by Lemma 3.1 (1),

3 D maol.G/ > maol.�G/ �maol.Sym.3// > 2 � 3 D 6;

a contradiction. Hence �G is trivial, so G Š Sym.3/, as we needed to show.

3.4 Proof of Theorem 1.1 (1)

This is immediate from Propositions 3.1.1, 3.2.4 and 3.3.3.

4 Finite groups G with maol.G/ D 8

This section is concerned with the proof of Theorem 1.1 (2). We begin by intro-
ducing a certain infinite sequence of finite 2-groups.

Definition 4.1. For n 2 NC, let Gn be the finite 2-group given by the power-
commutator presentation

hx1; : : : ; x2nC1; a; b j Œa; b� D Œxi ; a� D Œxi ; b� D 1;

Œx2i�1; x2i � D a; Œx2i ; x2iC1� D b;

Œxi ; xj � D 1 if ji � j j > 1; x21 D x
2
2nC1 D b;

a2 D b2 D x2i D 1 if 1 < i < 2n C 1i:

Remark 4.2. We note the following concerning Definition 4.1.

(1) As is easy to check, Gn is a finite 2-group of order 22
nC3, of nilpotency

class 2 and of exponent 4. Moreover, Cn´ �Gn D ha; bi Š .Z=2Z/2 and
Qn´ Gn=Cn Š .Z=2Z/2

nC1.

(2) The specified power-commutator presentation ofGn is inspired by the presen-
tation of the infinite 2-group

ha; b; x1; x2; : : : j Œa; b� D Œxi ; a� D Œxi ; b� D 1;

Œx2i�1; x2i � D a; Œx2i ; x2iC1� D b;

Œxi ; xj � D 1 if ji � j j > 1; x21 D b;

a2 D b2 D x2i D 1 if i > 1i;

which was given by Robinson and Wiegold as an example of a group with
infinite automorphism group but largest automorphism orbit length 4, see [20,
Section 4, construction before Proposition 3, Proposition 3 itself and the re-
mark after the proof of Proposition 3].
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(3) The assignment a 7! a, b 7! b, xi 7! xi for i ¤ 2n and x2n 7! x2nx2nC1

extends to a non-central automorphism ˛n of Gn.

We prove Theorem 1.1 (2) by proving the following proposition.

Proposition 4.3. For all n 2 NC, we have jAut.Gn/ W Autcent.Gn/j D 2. In par-
ticular, maol.Gn/ D 8.

Proof. The “in particular” follows from the observations that Autcent.Gn/ acts
transitively on each nontrivial coset of Cn and that jCnj D 4 (see Remark 4.2 (1)).
As for the main assertion, we will show that every automorphism of Gn lies in the
coset union Autcent.Gn/ [ Autcent.Gn/˛n, with ˛n as in Remark 4.2 (3). We do so
in several steps, in each of which we first make a claim, which is subsequently
proved.

Claim 1. Let g 2 Gn, and assume that ord.g/ D 4 and jGn W CGn
.g/j D 2.

(1) If there is no h 2 Gn with g2 D Œg; h�, then g 2 x1Cn.

(2) If there is an h 2 Gn with g2 D Œg; h�, then g 2 x2nC1Cn.

In particular, the two subgroups hx1; Cni and hx2nC1; Cni are characteristic in
Gn.

Write g � xu1

1 � � � x
uk

k
.modCn/, where ui 2 Z=2Z and uk ¤ 0. If k D 1, then

both asserted implications are true; the former because its necessary condition
is true, and the latter because its sufficient condition is false (g2 D x21 D b, but
Œg; Gn� D Œx1; Gn� D ¹1; aº). So assume henceforth that k > 1. We make a case
distinction.
Case (1): k < 2n C 1. This case plays out analogously to the proof of statement (i)
in [20, proof of Proposition 3], but we will give the argument here for complete-
ness and the reader’s convenience. If h 2 CGn

.g/, then modulo elements known
to commute with g, we can write h D xv1

1 � � � x
vkC1

kC1
with vi 2 Z=2Z. Then the

assumption that 1 D Œg; h� yields

1 D Œx1; x2�
u1v2Cu2v1 Œx2; x3�

u2v3Cu3v2 � � �

Œxk�1; xk�
uk�1vkCukvk�1 Œxk; xkC1�

ukvkC1 : (4.1)

Now use the commutator relations to equivalently rewrite formula (4.1) into a pair
of linear equations over F2 in the variables v1; : : : ; vkC1. The final terms of these
equations look as follows:

� � � C ukvk�1 C uk�1vk D 0;

� � � C ukvkC1 D 0:
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Since uk ¤ 0 by assumption and vkC1 does not occur in the first equation, the two
equations are F2-linearly independent, which implies jGn WCGn

.g/j D 22D 4 > 2,
a contradiction.
Case (2): k D 2n C 1. If h 2 CGn

.g/, then modulo elements known to commute
with g (namely a and b), we can write h D xv1

1 � � � x
v2nC1

2nC1 with vi 2 Z=2Z. The
assumption that 1 D Œg; h� yields

1 D Œx1; x2�
u1v2Cu2v1 Œx2; x3�

u2v3Cu3v2 � � �

Œx2n ; x2nC1�
u2nv2nC1Cu2nC1v2n : (4.2)

Using the commutator relations, we can equivalently rewrite formula (4.2) into the
following pair of linear equations over F2 in the variables v1; : : : ; v2nC1:

u2v1 C u1v2 C u4v3 C u3v4 C � � � C u2nv2n�1 C u2n�1v2n D 0;

u3v2 C u2v3 C u5v4 C u4v5 C � � �

C u2n�2v2n�1 C u2nC1v2n C u2nv2nC1 D 0:

We make a subcase distinction.
Subcase (a): at least one of u1; u2; : : : ; u2n is nonzero. Then since u2nC1 ¤ 0

by assumption, both equations are nonzero, and since jGn W CGn
.g/j D 2, they

must be F2-linearly dependent, which implies that u2 D u4 D � � � D u2n D 0 and
u1 D u3 D � � � D u2nC1 D 1. We conclude that

g � x1x3 � � � x2nC1 .modCn/;

whence g2 D x21x
2
3 � � �x

2
2nC1 D b � 1 � � �1 � b D b

2 D 1, contradicting our assump-
tion that ord.g/ D 4.

Subcase (b): u1 D u2 D � � � D u2n D 0. Then g � x2nC1 .modCn/. Similarly
to the argument for k D 1 above, we find that both asserted implications are true;
the former because its sufficient condition is false,

g2 D x22nC1 D b D Œx2n ; x2nC1� D Œx2n ; g�;

and the latter because its necessary condition is true.

Claim 2. Each of the three central order 2 subgroups hai, hbi and habi is charac-
teristic in Gn.

Indeed, we have that

� hai D Œhx1; Cni; Gn�,
� hbi D Ã1.hx1; Cni/ D h¹g2 j g 2 hx1; Cniºi,
� habi D hCn n .hai [ hbi/i.
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Claim 3. For each m 2 ¹0; : : : ; 2n�1º, the subgroup hCn; x1; x3; : : : ; x2mC1i is
characteristic in Gn.

We proceed by induction onm. The induction base,m D 0, is clear by Claim 1.
So assume that m > 1, and that hCn; x1; x3; : : : ; x2m�1i is characteristic in Gn.
Note that if m D 2n�1, then we are done by Claim 1 as

hCn; x1; x3; : : : ; x2mC1i D hhCn; x1; x3; : : : ; x2m�1i; hCn; x2mC1ii

D hhCn; x1; x3; : : : ; x2m�1i; hCn; x2nC1ii:

We may thus also assume that m < 2n�1. Set

Hm´ CGn
.hCn; x1; x3; : : : ; x2m�1i/

D hCn; x1; x3; : : : ; x2m�1; x2mC1; x2mC2; : : : ; x2nC1i:

Note that by the induction hypothesis, Hm is characteristic in Gn and

�Hm D hCn; x1; x3; : : : ; x2m�1i:

We will show the following claim: “if g 2Hm, Œg;Hm�D hai, jHm WCHm
.g/j D 2,

then g 2 x2mC1�Hm.”
Note that since

hCn; x1; x3; : : : ; x2mC1i D h�Hm; x2mC1�Hmi;

once this claim is proved, our inductive proof of Claim 3 is complete.
The proof of the claim is similar to the argument for Claim 1. Write

g � x
u2mC1

2mC1 � � � x
uk

k
.mod �Hm/

with ui 2 Z=2Z and uk ¤ 0. Note that if k D 2mC 1, then the asserted impli-
cation is true because its necessary condition is true. So we may assume that
k > 2mC 1. We make a case distinction.
Case (1): k < 2n C 1. If h 2 CHm

.g/, then modulo elements known to commute
with g, we can write h D xv2mC1

2mC1 � � � x
vkC1

kC1
with vi 2 Z=2Z. Our assumption that

1 D Œg; h� yields

1 D Œx2mC1; x2mC2�
u2mC1v2mC2Cu2mC2v2mC1 � � �

Œxk�1; xk�
uk�1vkCukvk�1 Œxk; xkC1�

ukvkC1 : (4.3)

Using the commutator relations, we can equivalently rewrite formula (4.3) into
a pair of linear equations over F2, which look like this:

� � � C ukvk�1 C uk�1vk D 0;

� � � C ukvkC1 D 0:
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Since uk ¤ 0, these two equations are F2-linearly independent, which implies that
jHm W CHm

.g/j D 22 D 4 > 2, a contradiction.

Case (2): k D 2n C 1. If h 2 CHm
.g/, then modulo elements known to commute

with g, we can write h D xv2mC1

2mC1 � � � x
v2nC1

2nC1 with vi 2 Z=2Z. Our assumption that
1 D Œg; h� yields

1 D Œx2mC1; x2mC2�
u2mC1v2mC2Cu2mC2v2mC1 � � �

Œx2n ; x2nC1�
u2nv2nC1Cu2nC1v2n : (4.4)

Using the commutator relations, we can equivalently rewrite formula (4.4) into the
following pair of linear equations over F2:

u2mC2v2mC1 C u2mC1v2mC2 C u2mC4v2mC3 C � � �

C u2nv2n�1 C u2n�1v2n D 0;

u2mC3v2mC2 C u2mC2v2mC3 C � � �

C u2n�2v2n�1 C u2nC1v2n C u2nv2nC1 D 0:

We make a subcase distinction.
Subcase (a): at least one of u2mC1; : : : ; u2n is nonzero. Then since u2nC1 ¤ 0

by assumption, both equations are nonzero, and since jHm W CHm
.g/j D 2, the

equations must be F2-linearly dependent. It follows that

u2mC2 D u2mC4 D � � � D u2n D 0;

u2mC1 D u2mC3 D � � � D u2nC1 D 1:

Hence
g � x2mC1x2mC3 � � � x2nC1 .mod �Hm/;

and therefore

Œg; x2mC2� D Œx2mC1; x2mC2� � Œx2mC2; x2mC3� D a � b ¤ a;

contradicting our assumption that Œg;Hm� D hai.
Subcase (b): u2mC1 D u2mC2 D � � � D u2n D 0. Then g � x2nC1 .mod �Hm/,

and thus
Œg;Hm� D hŒx2n ; x2nC1�i D hbi;

contradicting our assumption that Œg;Hm� D hai.
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In what follows, ˛ is an arbitrary automorphism of Gn. We can write

x˛i D x
˛i;1

1 x
˛i;2

2 � � � x
˛i;2nC1

2nC1 .modCn/ for i 2 ¹1; 2; : : : ; 2n C 1º;

with ˛i;j 2 Z=2Z.

Claim 4. The following hold.

(1) ˛1;1 D 1, and ˛1;j D 0 for j > 1.

(2) ˛2nC1;2nC1 D 1, and ˛2nC1;j D 0 for j < 2n C 1.

(3) For i 2 ¹1; : : : ; 2n�1 � 1º and j 2 ¹1; : : : ; 2n�1º:

(a) ˛2iC1;2j D 0;

(b) if j > i , then ˛2iC1;2jC1 D 0;

(c) ˛2iC1;1 D 0, and ˛2iC1;2iC1 D 1.

Indeed, statements (1) and (2) are clear by Claim 1. Moreover, statements (3) (a)
and (b) are clear by Claim 3. As for statement (3) (c), note that if ˛2iC1;1 D 1,
then ord.x˛2iC1/ D 4, a contradiction. Finally, ˛2iC1;2iC1 D 1 since otherwise,
by Claim 3,

x˛2iC1 2 hCn; x1; x3; : : : ; x2i�1i;

which contradicts the fact that hCn; x1; x3; : : : ; x2i�1i is characteristic in Gn.

Claim 5. For each i 2 ¹1; : : : ; 2n�1 C 1º, we have the following.

(1) The subgroup hx2i�1; Cni is characteristic in Gn.

(2) For j D 1; 2; : : : ; i � 1, we have

(a) ˛2j;2j D 1,

(b) x˛2jx
�1
2j � x

˛2j;1

1 x
˛2j;3

3 � � � x
˛2j;2i�1

2i�1 x
˛2j;2i

2i � � � x
˛2j;2nC1

2nC1 .modCn/.

This is analogous to the proof of statement (iv) in [20, proof of Proposition 3],
but we will give the argument in detail here, for the reader’s convenience and to
make sure it is not a problem that (in contrast to the situation in [20, proof of
Proposition 3]) we do not know at this point whether x2j;1 D 0.

We proceed by induction on i . The case “i D 1” is clear by Claim 1, and the
case “i D 2” is clear by Claim 4 (3) and the observation that if ˛2;2 D 0, then
x˛2 2 CGn

.hx1; Cni/, which contradicts the fact that CGn
.hx1; Cni/ is characteris-

tic in Gn.
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We may thus assume that i > 2, and that the assertion has been proved for i .
Let j 2 ¹1; 2; : : : ; i � 1º. Then by the induction hypothesis,

x˛2j � x2j � x
˛2j;1

1 x
˛2j;3

3 � � � x
˛2j;2i�1

2i�1 x
˛2j;2i

2i � � � x
˛2j;2nC1

2nC1 .modCn/;

x˛2i�1 � x2i�1 .modCn/:

Hence if j < i � 1, it follows from 1 D Œx2j ; x2i�1� that

1 D Œx2i�1; x2i �
˛2j;2i D a˛2j;2i ;

and thus ˛2j;2i D 0. And if j D i � 1, it follows from

b D Œx2i�2; x2i�1� D Œx2j ; x2i�1�

that
b D Œx2i�2; x2i�1� � Œx2i�1; x2i �

˛2j;2i D b � a˛2j;2i ;

whence, again, ˛2j;2i D 0. We just showed that

˛2j;2i D 0 for j D 1; 2; : : : ; i � 1: (4.5)

Now, by the induction hypothesis and formula (4.5), we have

x˛2j � x2j � x
˛2j;1

1 x
˛2j;3

3 � � � x
˛2j;2iC1

2iC1 x
˛2j;2iC2

2iC2 � � � x
˛2j;2nC1

2nC1 .modCn/;

x˛2iC1 � x
˛2iC1;3

3 x
˛2iC1;5

5 � � � x
˛2iC1;2iC1

2iC1 .modCn/:

It follows from 1 D Œx2j ; x2iC1� that

1 D Œx2j�1; x2j �
˛2iC1;2j�1 Œx2j ; x2jC1�

˛2iC1;2jC1

Œx2iC1; x2iC2�
˛2j;2iC2˛2iC1;2iC1

D a˛2iC1;2j�1C˛2j;2iC2˛2iC1;2iC1b˛2iC1;2jC1 ;

which implies that ˛2iC1;2jC1 D 0. We just showed that

˛2iC1;2jC1 D 0 for j D 1; 2; : : : ; i � 1: (4.6)

Together with Claim 4 (3), formula (4.6) implies that hx2iC1; Cni is characteristic
in Gn. Finally, by definition,

x˛2i � x
˛2i;1

1 x
˛2i;2

2 � � � x
˛2i;2nC1

2nC1 .modCn/;

and by the induction hypothesis,

x˛2jC1 � x2jC1 .modCn/:
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If j < i � 1, then it follows from 1 D Œx2i ; x2jC1� that

1 D Œx2j ; x2jC1�
˛2i;2j Œx2jC1; x2jC2�

˛2i;2jC2 D b˛2i;2j a˛2i;2jC2 ;

whence ˛2i;2j D ˛2i;2jC2 D 0. This shows that

˛2i;2j D 0 for j D 1; : : : ; i � 1: (4.7)

To complete the inductive proof of Claim 5, it remains to show that ˛2i;2i D 1.
Assume otherwise. Then by formula (4.7), x˛2i 2 CGn

.hCn; x1; x3; : : : ; x2i�1i/,
which contradicts that CGn

.hCn; x1; x3; : : : ; x2i�1i/ is characteristic in Gn.

Claim 6. For all i; j 2 ¹1; 2; : : : ; 2n�1º, we have

˛2i;2j D

´
1 if i D j;
0 otherwise:

In other words,

x˛2i � x2i � x
˛2i;1

1 x
˛2i;3

3 � � � x
˛2i;2nC1

2nC1 .modCn/:

This is immediate from Claim 5 with i D 2n�1 C 1. Note that by Claims 5
and 6, we now know that modulo Cn, ˛ fixes each of x1; x3; : : : ; x2nC1, and maps
each of x2; x4; : : : ; x2n to itself times some product of x1; x3; : : : ; x2nC1. The
next claim gives some restrictions on these odd-index factors.

Claim 7. Let i; j 2 ¹1; 2; : : : ; 2n�1º. Then the following hold.

(1) ˛2i;2i�1 D 0.

(2) ˛2j;2i�1 D ˛2i;2j�1 and ˛2j;2iC1 D ˛2i;2jC1.

Indeed, for statement (1), observe that if ˛2i;2i�1 D 1, then

x˛2i � x2i � x
˛2i;1

1 x
˛2i;3

3 � � � x
˛2i;2i�3

2i�3 x2i�1x
˛2i;2iC1

2iC1 � � � x
˛2i;2nC1

2nC1 .modCn/

and thus

.x˛2i /
2
D Œx2i�1; x2i � � Œx2i ; x2iC1�

˛2i;2iC1 � x22i �

2n�1Y
kD1

x
2˛2i;2kC1

2kC1

D a � b˛2i;2iC1 � b˛2i;1C˛2i;2nC1 ¤ 1;

which contradicts the fact that ord.x2i / D 2.
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For statement (2), note that

x˛2i � x2i � x
˛2i;1

1 x
˛2i;3

3 � � � x
˛2i;2i�3

2i�3 x
˛2i;2iC1

2iC1 x
˛2i;2iC3

2iC3 � � � x
˛2i;2nC1

2nC1 .modCn/;

x˛2j � x2j � x
˛2j;1

1 x
˛2j;3

3 � � � x
˛2j;2j�3

2j�3 x
˛2j;2jC1

2jC1 x
˛2j;2jC3

2jC3 � � � x
˛2j;2nC1

2nC1 .modCn/:

It follows from 1 D Œx2i ; x2j � that

1 D Œx2i�1; x2i �
˛2j;2i�1 Œx2i ; x2iC1�

˛2j;2iC1

Œx2j�1; x2j �
˛2i;2j�1 Œx2j ; x2jC1�

˛2i;2jC1

D a˛2j;2i�1C˛2i;2j�1 � b˛2j;2iC1C˛2i;2jC1 ;

whence indeed, ˛2j;2i�1 D ˛2i;2j�1 and ˛2j;2iC1 D ˛2i;2jC1, as required.

Claim 8. The following hold.

(1) For each i 2 ¹1; 2; : : : ; 2n�1 � 1º, the subgroup hx2i ; Cni is characteristic
in Gn.

(2) The coset union x2nCn [ x2nx2nC1Cn is a characteristic subset of Gn.

Note that by Claim 7 (2), if ˛2k;2l�1 D 0 for some k 2 ¹1; 2; : : : ; 2n�1º and
some l 2 ¹1; 2; : : : ; 2n�1 C 1º, then we can actually conclude that ˛e;o D 0 for all
pairs .e; o/ 2 ¹1; 2; : : : ; 2n C 1º2 where e is even, o is odd, e C o D 2k C 2l � 1.
This is because

˛2k;2l�1 D ˛2l;2k�1 D ˛2k�2;2lC1

if 2k � 2; 2l C 1 2 ¹1; : : : ; 2n C 1º;

˛2k;2l�1 D ˛2l�2;2kC1 D ˛2kC2;2l�3

if 2l � 3; 2k C 2 2 ¹1; 2; : : : ; 2n C 1º:

Therefore, by Claim 7 (1), we conclude that ˛e;oD 0whenever eC o� 3 .mod4/.
We claim that more generally, for each k D 2; 3; : : : ; nC 1, ˛e;o D 0 whenever
e C o � 1C 2k�1 .mod 2k/. We will show this by induction on k, with the in-
duction base, k D 2, done just above. So assume now that k 6 n, and that we
know that ˛e;o D 0 whenever e C o � 1C 2k�1 .mod 2k/. Then, in particular,
˛�;1 D ˛�;2nC1 D 0 whenever � 2 ¹1; 2 : : : ; 2n C 1º and � � 2k�1 .mod 2k/. If
˛�;�C1 D 1, it follows (in view of Claims 6 and 7 (1)) that

.x˛� /
2
D Œx�; x�C1� D b ¤ 1;

a contradiction. Hence ˛�;�C1 D 0 for all

� 2 ¹1; 2; : : : ; 2n C 1º with � � 2k�1 .mod 2k/;
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and thus ˛e;o D 0 for all pairs .e; o/ 2 ¹1; 2; : : : ; 2n C 1º2, where e is even, o is
odd and e C o � 1C 2k .mod 2kC1/, as we wanted to show.

An equivalent reformulation of what we just proved by induction on k is that
˛e;o D 0 for all pairs .e; o/ 2 ¹1; 2; : : : ; 2n C 1º2, where e is even and o is odd
unless e C o � 1 .mod 2nC1/, i.e., unless .e; o/ D .2n; 2n C 1/. Together with
Claim 6, this proves Claim 8.

We can now conclude the proof of Proposition 4.3 as follows: By Claims 5
and 8, we have that modulo Autcent.Gn/, every automorphism ofGn either fixes all
generators ofGn, or it maps x2n 7! x2nx2nC1 while fixing all the other generators
of Gn. In other words, modulo Autcent.Gn/, every automorphism of Gn is equal
to idGn

or ˛n as defined in Remark 4.2 (3), which is just what we wanted to show
(see the beginning of this proof).

5 Finite groups G with both maol.G/ and d.G/ bounded

This section is concerned with the proof of Theorem 1.1 (3). Recall from Subsec-
tion 2.1 that d.G/ denotes the minimum size of a generating subset of the finite
group G. We note that if G is any finite group with maol.G/ 6 c, then in par-
ticular, all conjugacy classes of G are of length at most c, and so if d.G/ 6 d ,
then the center �G, being the intersection of the centralizers of the elements of any
fixed generating subset of G, has index at most cd in G. Hence an upper bound
on jGj could be derived from an explicit version of Robinson and Wiegold’s the-
orem [20, Theorem 1], more precisely from an explicit upper bound on j�Gj for
all finite groups G with maol.G/ 6 c. As noted in [20, Remark (i) at the end of
Section 1], the proof of [20, Theorem 1] actually provides such an explicit upper
bound, but it is complicated and was not worked out explicitly by Robinson and
Wiegold.

Rather than proving our Theorem 1.1 (3) by making Robinson and Wiegold’s
result explicit, we will exploit the fact that a related, celebrated result of B. H. Neu-
mann (which motivated Robinson and Wiegold’s paper) has known explicit ver-
sions. This also means that modulo known, explicitly spelled out results, our proof
will be elementary (the Robinson–Wiegold proof uses cohomological methods).

A BFC-group is a group G such that the maximum conjugacy class length
in G is bounded from above by some constant. The above mentioned theorem
of B. H. Neumann states that a group G is a BFC-group if and only if the com-
mutator subgroup G0 is finite (see [18, Theorem 3.1]). Later, an explicit version of
Neumann’s theorem was proved by Wiegold [24, Theorem 4.7], stating that ifG is
a group in which all conjugacy classes are of length at most `, then the order of G0

is at most f .`/ for some explicit function f . The currently best known choice for
f is the one from the following theorem.
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Theorem 5.1 (Guralnick–Maróti, [11, Theorem 1.9]). Let ` be a positive integer,
and let G be a group such that all conjugacy classes of G are of length at most `.
Then

jG0j 6 `
1
2
.7C

log `

log 2
/
:

In our proof of Theorem 1.1 (3), we will also need some simple lower bounds on
the number of automorphisms of a finite abelian p-group P , which can be derived
from the following exact formula for jAut.P /j.

Theorem 5.2 (Hillar–Rhea, [12, Theorem 4.1]). Let p be a prime, and let P be
a finite abelian p-group. Write

P Š Z=pe1Z � � � � � Z=penZ with 1 6 e1 6 � � � 6 en:

For k D 1; : : : ; n, set

dk ´ max¹l 2 ¹1; : : : ; nº j el D ekº;

ck ´ min¹l 2 ¹1; : : : ; nº j el D ekº:

Then

jAut.P /j D
nY
kD1

.pdk � pk�1/ �

nY
jD1

pej .n�dj /
nY
iD1

p.ei�1/.n�ciC1/:

Corollary 5.3. With notation as in Theorem 5.2, and assuming thatP is nontrivial,
we have jAut.P /j > max¹p � 1; pen�1º.

Proof. Note that by definition, d1 > 1 and cn 6 n. It follows that

jAut.P /j D .pd1 � 1/ �

nY
kD2

.pdk � pk�1/

�

nY
jD1

pej .n�dj /
nY
iD1

p.ei�1/.n�ciC1/

> p � 1;

jAut.P /j D
nY
kD1

.pdk � pk�1/

�

nY
jD1

pej .n�dj /
n�1Y
iD1

p.ei�1/.n�ciC1/ � p.en�1/.n�cnC1/

> 1 � p.en�1/.n�cnC1/ > p.en�1/.n�nC1/ D pen�1;

as required.
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Furthermore, we will make use of the following upper bound on the first Cheby-
shev function.

Theorem 5.4 (Rosser–Schoenfeld, [21, Theorem 9]). Let

# W Œ0;1/! Œ0;1/; x 7!
X
p6x

logp;

where the summation index p ranges over primes, be the first Chebyshev function.
Then for all x > 0, we have #.x/ < 1:01624x.

The following elementary upper bound on the number of automorphisms of
a finite group will also be used.

Lemma 5.5. Let G be a finite group. Then jAut.G/j 6 jGjlog.jGj/= log2.

Proof. Let S D ¹x1; : : : ; xd.G/º be a (necessarily minimal) generating subset
of G of size d.G/. Then, setting Gi ´ hxi ; : : : ; xd.G/i for i D 1; : : : ; d.G/, we
obtain a subgroup series G D G1 > G2 > � � � > Gd.G/ > Gd.G/C1´ ¹1Gº. By
Lagrange’s theorem, jGiC1j > 2jGi j for each i 2 ¹1; : : : ; d.G/º, so jGj > 2d.G/,
whence

jS j D d.G/ 6
log jGj
log 2

:

The function which assigns to each automorphism of G its restriction to S is an
injection, and so jAut.G/j is at most the number of functions S ! G, which is
exactly jGjjS j 6 jGjlog.jGj/= log2.

Finally, we will need generalizations of the concepts of a “standard tuple” and
of the “power-commutator tuple” associated to a standard tuple as defined in the
proof of Proposition 3.2.4.

Definition 5.6. Consider the following concepts.

(1) Let p be a prime, and let P be a finite abelian p-group. Write

P Š Z=pe1Z � � � � � Z=pemZ with 1 6 e1 6 � � � 6 em:

For n 2 NC with n > m, a length n standard generating tuple of P is an
n-tuple .x1; : : : ; xn/ 2 P n such that P D hx1; : : : ; xni and for i 2 ¹1; : : : ; nº,

ord.xi / D

´
pei if i 6 m;
1 if i > m:
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(2) Let H be a finite abelian group, say with d.H/ D n. For k 2 NC, denote
by pk the k-th prime, and by Pk the Sylow pk-subgroup of H . Hence up to
isomorphism, we can writeH D

Q
k>1 Pk . A standard generating tuple ofH

is an n-tuple .h1; : : : ; hn/ 2 Hn such that H D hh1; : : : ; hni and for each
k > 1, the entry-wise projection of .h1; : : : ; hn/ to Pk is a length n standard
generating tuple of Pk .

(3) Let G be a finite group, and let n´ d.G=G0/. A standard tuple in G is an
n-tuple .g1; : : : ; gn/ 2 Gn whose entry-wise image under the canonical pro-
jection G ! G=G0 is a standard generating tuple of G=G0.

Remark 5.7. LetH be a finite abelian group, and letG be an arbitrary finite group.

(1) All standard generating tuples ofH are polycyclic generating sequences ofH ,
and they all induce the same power-commutator presentation ofH . Moreover,
any polycyclic generating sequence of H inducing this said power-commu-
tator presentation is a standard generating tuple. Hence Aut.H/ acts 1-tran-
sitively on the set of standard generating tuples of H , and so the number of
standard generating tuples of H is exactly jAut.H/j.

(2) The number of standard tuples in G is exactly jAut.G=G0/j � jG0jd.G=G
0/.

(3) For each standard tuple .g1; : : : ; gn/ in G, we have G D hg1; : : : ; gn; G0i.

Definition 5.8. Let G be a finite group, let n´ d.G=G0/, and let .g1; : : : ; gn/ be
a standard tuple in G.

(1) The power-automorphism-commutator tuple associated with .g1; : : : ; gn/ is
the .2nC

�
n
2

�
/-tuple

.�1; : : : ; �n; ˛1; : : : ; ˛n;

1;1; 1;2; : : : ; 1;n; 2;3; 2;4; : : : ; 2;n; : : : ; n�1;n/

with entries in G0 [ Aut.G0/ such that

� �i D g
ordG=G0 .giG

0/

i 2 G0 for i D 1; : : : ; n,

� ˛i 2 Aut.G0/ is the automorphism induced through conjugation by gi for
i D 1; : : : ; n,

� i;j D Œgi ; gj � 2 G
0 for 1 6 i < j 6 n.

(2) Two standard tuples in G are called equivalent if and only if they have the
same associated power-automorphism-commutator tuple.
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Remark 5.9. Let G be a finite group, let H ´ G=G0, and let n´ d.G=G0/.
Every standard generating tuple .h1; : : : ; hn/ of H is a polycyclic generating se-
quence of H , with respect to which H has the power-commutator presentation

H D hx1; : : : ; xn j x
ord.hi /
i D 1 for i D 1; : : : ; nI Œxi ; xj � D 1 for 1 6 i < j 6 ni:

Now, let .c1; : : : ; cm/ be a fixed generating tuple of G0, with respect to which G0

has the presentation

G0 D hy1; : : : ; ym j �j D 1 for j D 1; : : : ; ki

with �j an element of the free group F.y1; : : : ; ym/ for j D 1; : : : ; k. Then with
respect to any (generating) .mC n/-tuple of the form

.g1; : : : ; gn; c1; : : : ; cm/ 2 G
mCn;

where .g1; : : : ; gn/ is a standard tuple in G, the group G has a presentation of the
form

G D hx1; : : : ; xn; y1; : : : ; ym j �j D 1 for j D 1; : : : ; mI

x
oi

i D wi for i D 1; : : : ; nI

Œxi ; xj � D wi;j for 1 6 i < j 6 nI

y
xi

k
D vi;k for i D 1; : : : ; n and k D 1; : : : ; mi;

where oi denotes the common order of the i -th entry of any standard generating
tuple of H D G=G0, and wi ; wi;j ; vi;k 2 F.y1; : : : ; ym/.

From this, it is clear that any two equivalent standard tuples inG lie in the same
orbit of the component-wise action of Aut.G/; in fact, they are conjugate under an
automorphism of G which fixes G0 element-wise.

Proof of Theorem 1.1 (3). Let G be a finite group with maol.G/ 6 c, d.G/ 6 d .
Then in particular, all conjugacy classes of G are of length at most c. It follows
from Theorem 5.1 that

jG0j 6 c
1
2
.7Clog c/:

Our goal will thus be to bound jG W G0j explicitly from above in terms of c and d .
First, we show the following.

Claim. If p is a prime divisor of jG W G0j, then noting the definition of A.c; d/
from Theorem 1.1 (3),

p 6 A.c; d/C 1 D cdC
1
2
.7C

log c

log 2
/
�
.d

2
/C d

2 log 2
�.7C

log c

log 2
/ log c

�
C 1:
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In order to prove the claim, observe that by Corollary 5.3 and Remark 5.7 (2),
the number of standard tuples in G is at least

.p � 1/ � jG0jd.G=G
0/:

On the other hand, in view of Lemma 5.5, the number of equivalence classes of
standard tuples in G is at most

jG0j
d.G=G0/Cd.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
:

It follows that there is an equivalence class of standard tuples inG which is of size
at least

.p � 1/jG0jd.G=G
0/

jG0j
d.G=G0/Cd.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
D

p � 1

jG0j
d.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
:

On the other hand, as c > maol.G/, all Aut.G/-orbits on d.G=G0/-tuples over G
are of length at most cd.G=G

0/. In view of Remark 5.9, it follows that

cd.G=G
0/ >

p � 1

jG0j
d.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
;

and hence

p 6 cd.G=G
0/
� jG0j

d.G=G0/
log jG0j

log 2
C.d.G=G0/

2
/
C 1

6 cd � c
1
2
.7C

log c

log 2
/
�
d

1
2

.7C
log c
log 2

/ log c

log 2
C.d

2
/
�
C 1;

as asserted by the claim.
Now that the claim has been proved, let f denote the largest exponent e oc-

curring in the (essentially unique) direct factor decomposition of G=G0 into pri-
mary cyclic groups Z=peZ. Then by the above claim and the fact that G=G0 is
d -generated, we have (letting the variable p range over primes)

jGj

c
1
2
.7C

log c

log 2
/
6 jG W G0j 6

Y
p6A.c;d/C1

pdf D exp.#.A.c; d/C 1/ � df /;

and thus, in view of Theorem 5.4,

f >
log jGj � 1

2
.7C

log c
log2/ log c

d � #.A.c; d/C 1/

>
log jGj � 1

2
.7C

log c
log2/ log c

1:01624d � .A.c; d/C 1/
µ g.jGj; c; d/: (5.1)
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By Corollary 5.3 and Remark 5.7 (2), the number of standard tuples inG is at least

2f �1 � jG0jd.G=G
0/ > 2g.jGj;c;d/�1 � jG0jd.G=G

0/:

On the other hand, the number of equivalence classes of standard tuples in G is at
most

jG0j
d.G=G0/Cd.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
:

It follows that there is an equivalence class of standard tuples inG which is of size
at least

2g.jGj;c;d/�1 � jG0jd.G=G
0/

jG0j
d.G=G0/Cd.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
D

2g.jGj;c;d/�1

jG0j
d.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
:

But again, since maol.G/ 6 c, the length of an Aut.G/-orbit on d.G=G0/-tuples
over G cannot exceed cd.G=G

0/, and so, in view of Remark 5.9,

cd.G=G
0/ >

2g.jGj;c;d/�1

jG0j
d.G=G0/

log jG0j
log 2

C.d.G=G0/
2

/
;

which implies that

2g.jGj;c;d/�1 6 cd.G=G
0/
� jG0j

d.G=G0/
log jG0j

log 2
C.d.G=G0/

2
/

6 cd � c
1
2
.7C

log c

log 2
/
�
d

1
2

.7C
log c
log 2

/ log c

log 2
C.d

2
/
�

D A.c; d/:

It follows that

g.jGj; c; d/ 6
logA.c; d/

log 2
C 1;

or, equivalently (in view of the definition of g.jGj; c; d/ in formula (5.1) above),

log jGj 6 1:01624d � .A.c; d/C 1/ �
�

logA.c; d/
log 2

C 1

�
C
1

2

�
7C

log c
log 2

�
log c;

which is just what we needed to show.

6 Finite groups G with maol.G/ 6 23

This section is concerned with the proof of Theorem 1.1 (4). Let us first introduce
a shorthand notation for a concept that was already implicit in the previous section.
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Notation 6.1. Let G be a finite group. We denote by

mccl.G/´ max
g2G
jgG j

the maximum conjugacy class length of G.

The following lemma will prove useful in our proof of Theorem 1.1 (4).

Lemma 6.2. Let T be a finite group that can be written as a nonempty direct
product of nonabelian finite simple groups. Assume that mccl.T / 6 23. Then we
have T Š Alt.5/.

Proof. We first show the following, weaker claim.

Claim. Let S be a nonabelian finite simple group with mccl.S/ 6 23. Then we
have S Š Alt.5/.

Using the ATLAS of Finite Groups [7], one can check that mccl.S/ > 23 for
all sporadic finite simple groups S . Moreover, if S D Alt.m/ withm > 6, then the
length of the S -conjugacy class of any 3-cycle in S is

2 �

�
m

3

�
D
m.m � 1/.m � 2/

3
>
6 � 5 � 4

3
D 40 > 23:

It remains to show that if S is a nonabelian finite simple group of Lie type with
mccl.S/ 6 23, then

S Š A1.4/ Š A1.5/ Š Alt.5/:

To that end, note that if mccl.S/ 6 23, then S has a proper subgroup (namely an
element centralizer) of index at most 23, and so m.S/ 6 23, where m.S/ denotes
the minimum faithful permutation representation degree of S (or, equivalently,
the smallest index of a maximal subgroup of S ). The values of m.S/ when S is
a finite simple group of Lie type can be found in [10, Table 4, p. 7682] (see also
the references mentioned in [10, paragraph preceding Table 4]), and using this
information, it is easy to check that m.S/ 6 23 unless S Š Ad .q/ Š PSLdC1.q/
with .d; q/ from the set

¹.1; 5/; .1; 7/; .1; 8/; .1; 9/; .1; 11/; .1; 13/; .1; 16/; .1; 17/; .1; 19/;

.2; 3/; .2; 4/; .3; 2/º:

By going through the extended character tables of these finitely many groups S ,
which can be found in the ATLAS of Finite Groups [7], one finds that indeed,

S D A1.5/ Š Alt.5/

is the only nonabelian finite simple group with mccl.S/ 6 23.
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Now that the claim is proved, we can conclude as follows: Write

T D S
n1

1 � � � � � S
nr
r ;

where S1; : : : ; Sr are pairwise nonisomorphic nonabelian finite simple groups and
n1; : : : ; nr 2 NC. Then, since the conjugacy classes of a direct product G1 �G2
are just the Cartesian products of the conjugacy classes of G1 with the conjugacy
classes of G2, we find that

23 > mccl.T / D
rY
iD1

mccl.Si /ni :

Hence, by the above claim, we have r D 1 and S1 D Alt.5/, so T Š Alt.5/n1 . But
if n1 > 2, then

23 > mccl.T / D mccl.Alt.5//n1 D 20n1 > 202 D 400 > 23;

a contradiction. Therefore, T Š Alt.5/, as we needed to show.

Proof of Theorem 1.1 (4). We proceed by contradiction. Assume that G is a fi-
nite nonsolvable group with maol.G/ 6 23. Recall the facts on finite semisim-
ple groups listed in Subsection 2.4. We have that G=Rad.G/ is a nontrivial finite
semisimple group, and

23 > maol.G/ > mccl.G/ > mccl.G=Rad.G// > mccl.Soc.G=Rad.G///:

Since Soc.G=Rad.G// is a nonempty direct product of nonabelian finite simple
groups, Lemma 6.2 yields that Soc.G=Rad.G// Š Alt.5/, and thus G=Rad.G/ is
isomorphic to either Alt.5/ or Sym.5/. However,

mccl.Sym.5// D 24 > 23;

so we conclude that G=Rad.G/ Š Alt.5/. We now show the following.

Claim 1. Let x 2 G=Rad.G/, and let Qx be a lift of x in G. Then the conjugacy
class QxG consists of exactly one element from each of the cosets of Rad.G/ which
correspond to the elements of the conjugacy class xG=Rad.G/. In particular, we
have Rad.G/ D �G.

For the proof of Claim 1, assume first x is a nontrivial element of G=Rad.G/.
Then since G=Rad.G/ Š Alt.5/, we have

jxG=Rad.G/
j > 12 >

23

2
:
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Hence the conjugacy class length j QxG j, being a multiple of jxG=Rad.G/j, must be
equal to jxG=Rad.G/j, and the assertion follows for x. As for x D 1G=Rad.G/, the as-
sertion is equivalent to Rad.G/ 6 �G, which we can prove as follows. Fix a non-
trivial element y 2 G=Rad.G/, let Qy be a lift of y in G, and let r 2 Rad.G/ be
arbitrary. Then

. Qyr/ Qy D Qyr Qy 2 QyRad.G/ \ . Qyr/G D . Qyr/Rad.G/ \ . Qyr/G D ¹ Qyrº;

whence r Qy D r . This shows that CG.r/ contains all of G n Rad.G/, and thus
CG.r/ D G, i.e., r 2 �G. This concludes the proof of the main assertion, which in-
volved showing that Rad.G/ 6 �G. As for the “in particular”, i.e., Rad.G/ D �G,
just use that G=Rad.G/ Š Alt.5/ is centerless.

Claim 1 implies the following.

Claim 2. Let g1; g2 2 G. Then g1 and g2 commute if and only if their images in
G=Rad.G/ commute.

Note that the implication “)” in Claim 2 is trivial, so we focus on proving the
implication “(”. Let x1 and x2 be commuting elements of G=Rad.G/, and let ex1
and ex2 be lifts in G of x1 and x2 respectively. We need to show that ex1 and ex2
commute. Since x1 and x2 commute in G=Rad.G/, we conclude that

ex1ex2 2 ex1Rad.G/ \ ex1G D ¹ex1º;
where the equality is by Claim 1. Hence ex1ex2 D ex1, which just means that ex1 andex2 commute, as we wanted to show.

By Claim 2 and the facts that Rad.G/ D �G (see Claim 1) and that the Sylow
subgroups ofG=Rad.G/ Š Alt.5/ are abelian, it follows that the Sylow subgroups
of G are abelian. Hence, by [19, Result 10.1.7, p. 289], we have

G0 \ Rad.G/ D G0 \ �G D ¹1Gº:

But since G=Rad.G/ Š Alt.5/ is perfect, G D hRad.G/;G0i, whence

G D Rad.G/ �G0:

It follows that
G0 Š G=Rad.G/ Š Alt.5/;

and by Lemma 3.1 (1), we find that

23 > maol.G/ > maol.G0/ D maol.Alt.5// D 24;

a contradiction.
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7 Concluding remarks

We conclude this paper with some related open problems for further research.
Arguably the most glaring open problem, arising when comparing statements (1)
and (2) of Theorem 1.1 (1), is the following.

Problem 7.1. Determine the largest positive integer c0 such that there are only
finitely many finite groupsG with maol.G/ 6 c0 (and, if possible, list those finitely
many G).

Observe that by Theorem 1.1 (1) and (2), we have c0 2 ¹3; 4; 5; 6; 7º. The next
problem is motivated by the fact that the 2-groups discussed in Section 4 “just”
fail to have the property that all their automorphisms are central.

Question 7.2. Do there exist infinitely many finite groups G with j�Gj D 4 such
that all automorphisms of G are central?

If the answer to Question 7.2 is “yes”, then by Theorem 1.1 (1), the constant c0
from Problem 7.1 is 3, and Problem 7.1 is solved completely by Theorem 1.1 (1).

Finally, we would like to pose the following related problem on permutation
groups.

Problem 7.3. Let G 6 Sym.�/ be a permutation group of finite degree, and set

maolperm.G/´ max
g2G
jgNSym.�/.G/j:

Determine the largest non-negative integer c1 such that all finite-degree permu-
tation groups G with maolperm.G/ 6 c1 have constantly bounded order, and, if
possible, classify those G. Is c1 D c0, with c0 as in Problem 7.1?
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