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Abstract. Based on computing evidence, Guarnieri and Vendramin conjectured that, for
a generalized quaternion group G of order 2n > 32, there are exactly seven isomorphism
classes of braces with adjoint group G. The conjecture is proved in the paper.

Introduction

An affine structure of a group G is given by an action b 7! a � b of G on the
set G which satisfies the symmetry condition .a � b/a D .b � a/b for all a; b 2 G.
For any affine structure, the operation aC b´ .a � b/a makes G into an abelian
group A so that the action of G on A provides A with a G-module structure. The
identity map G ! A is a 1-cocycle. A G-module A which arises in this way is
said to be a brace [12]. The standard example of a brace is given by the Jacobson
radical J of a ring, with the group operation a ı b´ ab C aC b and the action
a � b´ b.1C a/�1. The group G of a brace A is therefore called the adjoint
group of A.

If G is finite, an affine structure of G forces G to be solvable [7]. Not every
finite solvable group admits an affine structure, but counterexamples are still hard
to find. They can be regarded as discrete versions of non-affine nilvarieties [5]
which disprove Milnor’s second conjecture [10]. A translation into finite group
theory [14] led to a class of p-groups of nilpotency class > 9 and p > 23 which
do not admit an affine structure [3].

Recall that the generalized quaternion group Q2m of order 2mC2 (m > 1) is
given by the relations

a2
mC1

D 1; b2 D a2
m

; bab�1 D a�1:

Braces with Q2m as adjoint group have been called quaternion braces [4, 8].
Using computer calculations up to order 512, Guarnieri and Vendramin [8] con-

jectured that, for each order 2mC2 > 32, there are exactly 7 isomorphism classes of
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quaternion braces. If true, this would provide an infinite sequence of groups with
increasing order for which the number of affine structures stabilizes at a certain
order. Some evidence for this phenomenon is given by papers of Sysak et al. [1,17]
which imply that the additive group of a quaternion brace must have a cyclic sub-
group of index 4.

In this paper, we classify quaternion braces of order > 32 and confirm the con-
jecture. As a first step, we show that the socle of such a brace is non-trivial, which
implies that the centre of the adjoint group is a brace ideal. Factoring out this ideal
turns every quaternion brace into a brace with a dihedral adjoint group. By in-
duction, this implies that all subgroups of ha4i are brace ideals, while the Frattini
subgroup ha2i of the adjoint group is still an additive subgroup (Proposition 1),
reproving the results of Sysak et al. [1,17] in a brace-theoretic manner. It turns out
that the subgroup ha2i need not be a submodule under the adjoint group. Using
Proposition 1, it follows that the additive group of a dihedral brace of order 16 is
either cyclic or isomorphic to C2 � C8 (Propositions 2–4). By an inductive argu-
ment, we infer that the additive group of a quaternion brace of order > 32 is either
cyclic or isomorphic to C2 � C2mC1 (Theorem 1).

As a second step, we prove that the brace ideal ha4i is always contained in the
socle (Theorem 2). In the extreme case ha4i D Soc.A/, the retraction A=Soc.A/
of A is a dihedral brace of order 8. These braces were classified by Bachiller [2]
and further investigated in [16]. There are 8 such braces, but we show that only
one of them can arise. As a consequence, we infer that the case ha4i D Soc.A/
leads to a single isomorphism class of quaternion braces (Theorem 3).

So we are left with the case that the subgroup ha2i is contained in the so-
cle. Then a � a … hai again leads to a single isomorphism class of quaternion
braces (Theorem 4). The remaining case a � a 2 hai includes the cyclic quaternion
brace [13]. Apart from this, we find 4 isomorphism classes of quaternion braces,
characterized by a classifying pair of invariants (Theorem 5). So we arrive at seven
isomorphism classes of quaternion braces, as conjectured.

1 Dihedral and quaternion braces

An affine structure [16] of a group G is given by a left action b 7! a � b of G on
its underlying set such that the equation

.a � b/a D .b � a/b (1.1)

holds for all a; b 2 G. It follows that the equations

ab � c D a � .b � c/; 1 � a D a; a � 1 D 1
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are satisfied in G. The symmetry condition (1.1) gives rise to an abelian group
structure

aC b´ .a � b/a D .b � a/b (1.2)

of G which makes G into a linear cycle set [11]:

a � .b C c/ D .a � b/C .a � c/; (1.3)

.aC b/ � c D .a � b/ � .a � c/; (1.4)

providing a solution to the Yang–Baxter equation [11]. If b 7! ba denotes the in-
verse to b 7! a � b, the group operation of G can be recovered as ab´ ab C b.

Therefore, equations (1.3), (1.4) give an alternative description of an affine
structure in terms of addition (1.2) instead of the group structure of G. The proto-
typical example is given by any (unital associative) ringRwith Jacobson radical J .
Then the adjoint group .J I ı/ with a ı b´ ab C aC b has an affine structure
with a � b´ b.1C a/�1.

By analogy, a system .AIC; � / satisfying equations (1.3) and (1.4) is called
a brace [12] with adjoint group Aı´ .AI ı/ given by

a ı b´ ab C b: (1.5)

Thus, in essence, a brace is equivalent to an affine structure of its adjoint group. As
in the case of a Jacobson radical J , the unit element of .AI ı/ coincides with the
zero element of the additive group .AIC/. Therefore, we denote it by 0. Following
Jacobson [9], we also write a0 for the inverse of a in the adjoint group Aı. Note
that a 7! ab gives a right action of Aı on .AIC/ so that equation (1.5) states that
the identity map Aı ! A is a bijective 1-cocycle for this action. Thus a brace with
adjoint group G could also be regarded as a bijective 1-cocycle of G onto a right
G-module.

For the basics on braces, we refer to [12]. Motivations, and relationships to
various other structures can be looked up in [14]. Here we only recall the main
concepts needed for what follows. Like in a ring, there is a concept of ideal for
any brace A. To see the analogy, we introduce the ring multiplication of a brace,
denoted by juxtaposition, and given by the equation a ı b D ab C aC b. Thus
ab D ab C a. The reader is warned that ring multiplication is only one-sided dis-
tributive: .aC b/c D ab C ac. Now a subgroup I of a braceA is said to be a right
ideal if a 2 I and b 2 A implies that ab 2 I . If ba 2 I also holds, I is called an
ideal [12]. As the name suggests, ideals can be factored out to give new braces
A=I , like in ring theory. Equivalently, a right ideal is the same as an additive sub-
group which is invariant under the adjoint operation a 7! b � a for all b 2 Aı. In
particular, any right ideal is a subgroup of Aı. A right ideal I is an ideal if and
only if I ı is a normal subgroup of Aı.
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A brace A and its corresponding affine structure of Aı is said to be trivial if
the action b 7! a � b is trivial, or equivalently, ab D 0 for all a; b 2 A. Thus every
abelian group can be regarded as a trivial brace.

There are two ideals of any braceAwhich deserve particular attention, the socle

Soc.A/´ ¹a 2 A j for all b 2 A; we have a � b D bº;

and the “square” A2 which consists of the finite sums
Pn
iD1 aibi with ai ; bi 2 A.

The latter is the smallest ideal I for which A=I is a trivial brace, hence a counter-
part to the socle. The brace homomorphism A� A=Soc.A/ is called the retrac-
tion map, and A=Soc.A/ is said to be the retraction of A. The fixator

Fix.A/´ ¹a 2 A j for all b 2 A; we have b � a D aº

is only a right ideal, in general.
Now we turn our attention to the generalized quaternion group Q2m of order

2mC2, and the dihedral group D2m of order 2mC1, given by generators and rela-
tions

Q2m D ha; b j a2
mC1

D 1; b2 D a2
m

; aba D bi .m > 1/;

D2m D ha; b j a2
m

D b2 D 1; aba D bi .m > 2/:
(1.6)

We have written the relations in a form which underlines the similarity of both
groups and will be useful in what follows. The generators a; b will be kept fixed
throughout the paper. The lattices of subgroups of Q2m and D2m are almost
identical, with the only difference that Q2m has a smallest subgroup, the centre
Z D ha2

m

i, so that Q2m=Z Š D2m .

1
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The centre of D2m is also of order 2, namely, Z.D2m/ D ha2
m�1

i. In both cases,
the commutator subgroup coincides with the Frattini subgroup ha2i. There are
three maximal subgroups: the cyclic group hai, and two non-cyclic subgroups
ha2; bi and ha2; bai which are connected by the automorphism b 7! ba, a 7! a.
Note that any non-cyclic subgroup of D2m is dihedral, while each non-cyclic sub-
group of Q2m is a generalized quaternion group. We frequently make use of the
fact that D2m and Q2m admit an automorphism which maps a to an odd power ai

and b to some baj . For i D j D 1, this automorphism is an involution which fixes
the subgroups of hai. The normal subgroups ofD2m orQ2m are exactly the groups
which either contain or are contained in the Frattini subgroup ha2i.

For a finite braceA, we call jAj the order ofA. If the additive group is cyclic, the
brace A is said to be cyclic [13]. In what follows, we focus upon braces of order 2n

which we also call 2-braces. We say that a 2-brace is dihedral if its adjoint group is
a dihedral group. IfAı is a generalized quaternion group, we speak of a quaternion
brace. To classify quaternion braces, we first have to deal with the possible additive
groups. In [13], we have shown that, for each 2-power> 8, there is a unique cyclic
quaternion brace. Its socle is of index 2. As these braces are completely described,
we can restrict ourselves to non-cyclic braces.

Proposition 1. Let A be a dihedral or quaternion brace of order 2n. Then all sub-
groups ha4i i ofAı are brace ideals. If jAj > 16, then ha2i is an additive subgroup
of A, and a2

n�2

2 Soc.A/ \ Fix.A/.

Proof. By definition (1.6), jAj > 8. For jAj D 8, we have a4 D 0. So we can as-
sume that n > 4. Suppose that Soc.A/ D 0. Then Aı embeds into the automor-
phism group Aut.AC/ of the additive group AC of A. Thus AC admits an auto-
morphism of order 2n�1. By Berkovič’s theorem [6], this is impossible. Hence
Soc.A/ contains the centre Z D ha2

n�2

i of Aı. For x 2 A and z 2 Z, this gives
.x � z/x D .z � x/z D xz D zx, which yields x � z D z. Thus Z is a brace ideal
with Z � Soc.A/ \ Fix.A/, and A=Z is a dihedral brace. If jA=Zj > 16, we can
proceed in the same fashion to obtain a 2-element brace ideal of A=Z. Its inverse
image along A� A=Z is a brace ideal of A. Iterating this procedure, we get
a sequence of brace ideals of A,

0 D ha2
n�1

i � ha2
n�2

i � � � � � ha4i:

Thus B ´ A=ha4i is a dihedral brace of order 8, and it remains to verify that
B satisfies 2a2 D 0. Now there are eight braces with adjoint group D4 (see [2]).
In [16, Example 3], they are denoted as B1; : : : ; B8. For B1; : : : ; B6, the socle is
non-trivial, which implies that ha2i is an ideal. The brace B7 has additive group
C2 � C2 � C2 so that 2a2 D 0. For the remaining brace B8, the additive group is
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C2 � C4. In terms of vectors
�
x
y

�
with x 2 C2 and y 2 C4, the additive structure

of B8 is given as follows:

a D

�
0

1

�
; a2 D

�
1

2

�
; a3 D

�
1

1

�
;

b D

�
0

2

�
; ba D

�
0

3

�
; ba2 D

�
1

0

�
; ba3 D

�
1

3

�
:

Thus 2a2 D 0, which completes the proof.

Dealing with dihedral or quaternion braces, we mostly write xy instead of
x ı y. As we make no further use of the ring multiplication in this paper, this
cannot lead to confusion. Accordingly, we also write x�i for the inverse of xi in
the adjoint group. In what follows, we frequently use the formula (see [16, equa-
tion (2.8)]) which holds in any brace:

x � yz D
�
.z � x/ � y

�
.x � z/:

2 The additive group of a quaternion brace

In this section, we show that non-cyclic quaternion braces of order 2mC2 > 32
have an additive group isomorphic to C2 � C2mC1 , where Cn denotes the cyclic
group of order n. To this end, we have to prove three non-existence theorems first.

Proposition 2. There is no dihedral brace with additive group C4 � C4.

Proof. Let A be such a brace. Then the subbrace 2A has the Klein four-group
as additive group. Suppose first that 2A D ha2i. Since ha2i is cyclic, this implies
that 2A is a non-trivial brace. Hence a2 � a2 D a6. Moreover, a � a2 and a � a6

belong to ¹a2; a6º. Thus a2 � a2 D a � .a � a2/ D a2, a contradiction. So we have
2A ¤ ha2i, and by symmetry, we can assume that 2A D ha4; bi. By Proposition 1,
a4 2 Soc.A/ \ Fix.A/. Hence the above formula yields

x � ya4 D
�
.a4 � x/ � y

�
.x � a4/ D .x � y/a4 for all x; y 2 A:

Thus
x � ya4 D .x � y/a4: (2.1)

Suppose that aC a D a4. Then a � a D a3. So

a � a2 D
�
.a � a/ � a

�
.a � a/ D .a3 � a/a3 D .a � a3/a;
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which gives

a2 � a2 D a � .a � a3/a D
�
.a � a/ � .a � a3/

�
.a � a/

D
�
a3 � .a � a3/

�
a3 D .a4 � a3/a3 D a6:

Hence a2 C a2 D .a2 � a2/a2 D 0. Since a2 … ha4; bi D 2A, this is impossible.
So we obtain

aC a 2 ¹b; ba4º:

(Note that aC a D 0 would imply that a 2 2A D ha4; bi.)
By symmetry, we can assume that aC a D b. So a � a D ba7. Furthermore,

b C b D 0 implies that b � b D b. By Proposition 1, a2 C a2 2 2A \ ha2i, which
yields a2 C a2 D a4. Thus a2 � a2 D a2. If a � b D a4, then b D a7 � a4 D a4,
which is impossible. Since a � b 2 2A, this implies that a � b 2 ¹b; ba4º. Hence
.a � b/a D .b � a/b yields b � a 2 ¹a7; a3º. Thus

b � a2 D
�
.a � b/ � a

�
.b � a/ D .b � a/2 D a6:

So .a2 � b/a2 D .b � a2/b D a6b D ba2 gives a2 � b D b. Therefore, we get

b � .a � b/ D a7 � .b � b/ D a7 � b D a � b:

Hence

a � ba D
�
.a � a/ � b

�
.a � a/ D .ba7 � b/ba7 D

�
b � .a � b/

�
ba7

D .a � b/ba7 D .a � b/ab D .b � a/bb;

that is, a � ba D b � a. Consequently, ba � ba D b � .b � a/ D a, which yields

baC ba D aba D b:

Furthermore, equation (2.1) yields

a5 C a5 D .a5 � a5/a5 D .a � a5/a5 D .a � a/a D b;

ba5 C ba5 D .ba5 � ba5/ba5 D .ba � ba/a4ba5 D a5ba5 D b:

Thus
aC a D a5 C a5 D baC ba D ba5 C ba5 D b:

On the other hand, ba7 � ba7 D ba7 � .a � a/ D b � a. Hence

ba7 C ba7 D .b � a/ba7 D .a � b/aa7 D a � b 2 ¹b; ba4º:
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Now the fibers of the map x 7! 2x are of cardinality 4. Hence a � b D ba4. Thus
.a � b/a D .b � a/b yields b � a D a3, and therefore, a D b � a3. If a3 � a3 D a,
then a3 D a5 � a D a � a, a contradiction. So a3 C a3 D .a3 � a3/a3 ¤ a4, which
yields a3 C a3 D ba4. Thus a3 � a3 D ba. So we obtain

ba D a3 � a3 D a3 � .b � a/ D ba5 � a D b � .a � a/

D b � ba7 D
�
.a7 � b/ � b

�
.b � a7/ D

�
.a � b/ � b

�
.b � a7/

D .ba4 � b/.b � a3/a4 D .b � b/aa4 D ba5;

a contradiction. So the brace A cannot exist.

Proposition 3. There is no dihedral brace with additive group C4 � C2 � C2.

Proof. Let A be such a brace. The set I of elements x 2 A with 2x D 0 is a right
ideal of index 2, hence a brace ideal of A. In particular, a2 2 I . If I D hai, then
I is a brace with additive group C2 � C2 � C2 and cyclic adjoint group. By [15,
Proposition 10], this is impossible. Using the symmetry of Aı Š D8, we can as-
sume without loss of generality that I D ha2; bi. As the additive group of I is
elementary abelian, the dihedral brace I is of type B7 in the list of braces in [16,
Example 3]. By Proposition 1, a4 belongs to the fixator of A. Hence a4 2 Fix.I /,
contrary to [16, table (5.5)]. Thus A cannot exist.

Proposition 4. There is no dihedral brace with additive group C2�C2�C2�C2.

Proof. Let A be such a brace. Then 2A D 0. By Proposition 1, ha4i � Fix.A/.
Consider the brace ideal A2 (see [12]), the smallest ideal I for which A=I is
a trivial brace. By [12, corollary of Proposition 8], A2 ¤ A. Since A=A2 is trivial,
ha2i � A2. IfA2 D hai, the adjoint group ofA2 is cyclic, while the additive group
is elementary abelian, contrary to [15, Proposition 10]. If A2 D ha2; bi, then A2 is
a dihedral brace of typeB7. As in the preceding proof, this leads to a contradiction.
Thus it remains to consider the caseA2 D ha2i. Then 0 D aC a D .a � a/a yields
a � a D a7. Hence hai is a subbrace of A with cyclic adjoint group. As above, we
infer that this is impossible.

Now we are ready to determine the additive group of a dihedral or quaternion
brace.

Theorem 1. Let A be a non-cyclic brace of order jAj D 2n. If A is dihedral
with n > 4 or quaternion with n > 5, then its additive group is isomorphic to
C2 � C2n�1 .
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Proof. Assume first that A is dihedral. For n D 4, the theorem follows by Propo-
sitions 2–4. So we can assume that n > 5. By Proposition 1, ha4i is a brace ideal,
and ha2i is an additive subgroup of A. Thus a2 C a2 2 ha2i, which implies that
a2 � a2 2 ha2i. Hence C ´ ha2i is a subbrace of A with a cyclic adjoint group of
order jC j > 8. By [15, Proposition 10], it follows that the additive group CC of C
is cyclic. Thus, if the theorem were false, the additive group of A would have to
be isomorphic either to CC � C4 or CC � C2 � C2. Factoring out the ideal ha8i,
this would give a dihedral brace with additive group C4 � C4 or C4 � C2 � C2.
By Propositions 2 and 3, this is impossible.

Now let A be a quaternion brace with n > 5. By Proposition 1 and [16, Propo-
sition 10], C D ha2i is a cyclic subgroup of the additive group of A. Suppose
that the theorem does not hold. Then the additive group of A must be isomorphic
to C2n�2 � C4 or C2n�2 � C2 � C2. So the brace A=ha8i has an additive group
isomorphic to C4 � C4 of C4 � C2 � C2, contrary to Proposition 2 or Proposi-
tion 3.

Next we show that the socle of a quaternion brace is relatively large.

Theorem 2. Let A be a quaternion brace of order jAj > 32. Then ha4i � Soc.A/.

Proof. IfA is cyclic, this follows by [13, Proposition 12]. Thus letA be non-cyclic.
By Theorem 1, the additive group of A is of the form C2 � C2mC1 with m > 3.
We identify Cn with the additive group of Z=nZ and represent the elements of
C2 � C2mC1 as vectors

�
x
y

�
with x 2 C2 and y 2 C2mC1 . Then the automorphisms

of C2 � C2mC1 are matrices

A D

�
1 y

2mx 1C 2z

�
with x; y 2 C2 and z 2 C2m . (The mnemonic reason to write A for the matrix, not
to be confused with the brace A, will become obvious below.) Note that the vector�
1
0

�
2 C2 � 0 has to be mapped by A to a non-zero vector v with 2v D 0, which

forces the lower left entry of A to be of the form 2mx. Since A has to be invertible,
the diagonal entries must be odd. So we have

A2 D

�
1 0

0 2mxy C .1C 2z/2

�
; A4 D

�
1 0

0 .1C 2z/4

�
:

For a second matrix

B D

�
1 v

2mu 1C 2w

�
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in Aut.C2 � C2mC1/, we have

AB D

�
1 v C y

2m.x C u/ 2mxv C .1C 2z/.1C 2w/

�
;

and thus

ABA D

�
1 v

2mu 2m.x C u/y C 2mxv C .1C 2z/2.1C 2w/

�
:

Let a 7! A and b 7! B be the representation Aı ! Aut.C2 � C2mC1/ given by
the map d 7! c � d in the brace A. The relation aba D b in Aı gives ABA D B ,
that is,

1C 2w D 2m.x C u/y C 2mxv C .1C 2z/2.1C 2w/

in C2mC1 . Multiplying by the unit .1C 2w/�1 turns the equation into

1 D 2m.x C u/y C 2mxv C .1C 2z/2: (2.2)

Multiplying with the even number 1C .1C 2z/2 yields

1C .1C 2z/2 D .1C 2z/2
�
1C .1C 2z/2

�
D .1C 2z/2 C .1C 2z/4:

Whence .1C 2z/4 D 1. Thus A4 D 1, which shows that a4 2 Soc.A/.

3 Quaternion braces with minimal socle

In this section, we classify the non-cyclic quaternion bracesA of order 2mC2 > 32
for which the socle is minimal, that is, Soc.A/ D ha4i. Then A=Soc.A/ is a dihe-
dral brace of order 8. As above, let a; b 2 A be represented by the matrices

A D

�
1 y

2mx 1C 2z

�
; B D

�
1 v

2mu 1C 2w

�
in Aut.C2 � C2mC1/. The equation aba D b in Aı yields equation (2.2), which
can be rewritten as

4z.z C 1/ D 2m.xy C uy C xv/; (3.1)

while b2 D a2
m

leads toB2 D 1, that is, 2muv C .1C 2w/2 D 1, or equivalently,

4w.w C 1/ D 2muv: (3.2)
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Since A4 D 1, the equation a2
mC1

D 1 gives no further relation for the matrices
A and B . So the representation Aı ! Aut.C2 � C2mC1/ is completely charac-
terized by equations (3.1) and (3.2) in C2mC1 . Our first aim is to determine the
possible types of braces B D A=Soc.A/. In [16, Example 3], the dihedral braces
B1; : : : ; B8 of order 8 are described. The cyclic brace B1 is excluded by the fol-
lowing.

Proposition 5. Let A be a quaternion brace of order > 16. If A=ha4i is a cyclic
brace, then A is cyclic.

Proof. Assume that B ´ A=ha4i is cyclic. Since Bı is dihedral, [13, Propo-
sition 12] implies that Soc.B/ D 2B . Any x 2 B X 2B satisfies x ı x D 0 and
Bı Š hxi � 2B . Moreover, x generates the additive group of B . Since a is of
order 4 modulo ha4i, its residue class in B generates 2B . Hence hai=ha4i D 2B .
So the residue class of b modulo ha4i generates the additive group of B . As an in-
verse image of Soc.B/, the subgroup hai of Aı is a brace ideal. Its adjoint group is
cyclic of order > 8. So the additive group of hai is cyclic, too. Furthermore, b C b
generates the additive group of hai since its image modulo ha4i generates 2B .
Therefore, the brace A itself is cyclic.

So the additive group of B D A=Soc.A/ must be isomorphic to C2 � C4. The
lattice of subgroups of C2 � C4 looks as follows:

t
t t t

t t
t

t
@

@@

@
@@

@
@@

�
�
�
�
�

�
�
�
�
�

3 4

1 2
(3.3)

An automorphism of C2 � C4 can only permute 1 with 2 or 3 with 4, while the
other subgroups have to stay fixed. Similarly, an automorphism of C2 � C2mC1

induces a lattice automorphism which therefore can only permute the two obvious
pairs of subgroups, like 1; 2 or 3; 4 in the following example for m D 3:

t
t t t

t t t
t t t

t t t
t

@
@@

@
@@

@
@@

@
@@

@
@@

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

3 4

1 2
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For B3 and B7, the additive group is elementary abelian. Thus only the following
braces have to be considered:

t
t t t

t t
t

t
@
@@

@
@@

@
@@

�
�
�
�
�

�
�
�
�
�

t
t t t

t t
t

t
@

@@

@
@@

@
@@

�
�
�
�
�

�
�
�
�
�

$ t
t t t

t t
t

t
@

@@

@
@@

@
@@

�
�
�
�
�

�
�
�
�
�

$

B2 B4 B5

t
t t t

t t
t

t
@
@@

@
@@

@
@@

�
�
�
�
�

�
�
�
�
�

$

t
t t t

t t
t

t
@

@@

@
@@

@
@@

�
�
�
�
�

�
�
�
�
�

$

$

B6 B8

The orbits of subgroups under automorphisms are indicated in the pictures. Since
B D A=Soc.A/, the braces B4; B5, and B8 where the lower pair of subgroups is
moved, have to be discarded. Thus only B2 and B6 remain to be considered.

For B2, the residue class of a 2 Aı acts trivially on the additive group. So the
entries of the matrix A satisfy y D 0 and 2 j z. As the subgroups 1 and 2 in (3.3)
have to stay fixed under the matrix B , it follows that v D 0. Thus equation (3.1)
becomes 4z D 0, which implies that A2 D 1. Since a2 … Soc.A/, this contradicts
our assumption. So the brace A=Soc.A/ must be of type B6. We shall obtain this
fact independently in the proof of Theorem 3.

We need the construction of braces by socle extension (see [2, Theorem 2.1]).

Proposition 6. Let B be a brace, and let A be an abelian group with a surjec-
tive homomorphism pWA� B onto the additive group of B . Furthermore, let
� WBı ,! Aut.A/ be an injective group homomorphism such that

p
�
�.b/.a/

�
D b � p.a/ (3.4)

holds for a 2 A and b 2 B . Then

a � c´ �p.a/.c/ (3.5)

makesA into a brace with retraction map p. Conversely, every braceA is obtained
in this way.
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Proof. For a; c; d 2 A, equations (3.4), (3.5) give

.aC c/ � d D �p.aC c/.d/ D �
�
p.a/C p.c/

�
.d/

D �
�
.p.a/ � p.c// ı p.a/

�
.d/ D �

�
.p.a/ � p.c/

�
�p.a/.d/

D �p
�
�p.a/.c/

�
�p.a/.d/ D �p.a � c/.a � d/ D .a � c/ � .a � d/:

Thus equations (1.3), (1.4) are satisfied. Hence A is a brace with Soc.A/ D Kerp.
Conversely, let A be a brace with retraction map pWA� B . Then a 7! b � a

induces a natural embedding � WB ,! Aut.A/ which satisfies equation (3.5). Fur-
thermore, equation (3.4) follows since p is a brace morphism.

Remarks. (1) To verify equation (3.4), it is enough to check the equation for the
elements b of a generating system of Bı. Indeed, let equation (3.4) be satisfied for
b1; b2 2 B . Then

p
�
�.b1b2/.a/

�
D p

�
�.b1/�.b2/.a/

�
D b1 � p

�
�.b2/.a/

�
D b1 � .b2 � p.a// D b1b2 � p.a/:

Similarly, equation (3.4) implies that p
�
�.b�1/.a/

�
D b�1 � p.a/.

(2) Equation (3.4) states that the diagram

A A

B B

 
!

�.b/

 

�

p  

�

p

 

!
b�. /

commutes for all b 2 B . In other words, Bı embeds into the group Autp.A/ of
automorphisms which leave Kerp invariant so that the composed map

Bı ,! Autp.A/! Aut.B/

coincides with the adjoint action of B .

Theorem 3. Letm > 3 be an integer. Up to isomorphism, there is a unique quater-
nion brace A of order 2mC2 with jA=Soc.A/j > 8.

Proof. For the cyclic quaternion brace, the socle is of index 2. Thus A cannot be
cyclic. By Theorem 2, jA=Soc.A/j D 8. We keep the above notation. To make A
into a brace, we have to identify the generators a; b of the adjoint group with
vectors in the additive group C2 � C2mC1 :

a D

�
p

q

�
; b D

�
r

s

�
: (3.6)
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Note that

A�1 D

�
1 y

2mx 2mxy C .1C 2z/�1

�
;

B�1 D

�
1 v

2mu 2muv C .1C 2w/�1

�
:

Thus, with the identification (3.6),

a2 D aa C a D A�1
�
p

q

�
C

�
p

q

�
D

�
yq

2mx.p C yq/C .1C 2z/�1q C q

�
;

a3 D .a2/a C a D

�
p C yq

2mxp C .1C 2z/�2q C .1C 2z/�1q C q

�
:

Hence a4 D .a3/a C a, which yields

a4 D

�
0

.1C 2z/�3q C .1C 2z/�2q C .1C 2z/�1q C q

�
:

Now we have 1C .1C 2z/C .1C 2z/2 C .1C 2z/3 D 4.1C 3z C 4z2 C 2z3/,
from which we infer that a4 D

�
0
4t

�
for some t 2 C2mC1 . Since a4 2 Soc.A/, it

follows that a8 D .a4/a
4

C a4 D
�
0
8t

�
. Hence a4i D

�
0
4it

�
, and thus a2

m

D 0 if t
is even, and a2

m

D
�
0
2m

�
if t is odd. Since

.1C 2z/�3q C .1C 2z/�2q C .1C 2z/�1q C q

D 4q.1C 2z/�3.1C 3z C 4z2 C 2z3/;

it follows that q and 1C 3z must be odd, that is, 2 − q and 2 j z. Next we have

ab D ab C b D B�1
�
p

q

�
C

�
r

s

�
D

�
p C v C r

2mu.p C v/C .1C 2w/�1q C s

�
:

Thus

aba D .ab/a C a D

0BB@
v C r C y C ys

2mx.p C v C r/C 2mxy.1C s/C 2mu.p C v/

C.1C 2z/�1.1C 2w/�1q C .1C 2z/�1s C q

1CCA :
Since aba D b, this yields

v D y.1C s/; (3.7)
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and therefore,

2mx.p C r/C 2mu.p C v/

C .1C 2z/�1.1C 2w/�1q C q C .1C 2z/�1s D s:

Multiplication with .1C 2z/.1C 2w/ gives

2mx.p C r/C 2mu.p C v/C q C q.1C 2z/.1C 2w/ D 2zs.1C 2w/:

Modulo 4, this yields, since z is even, 4 j q C q.1C 2w/ D 2q.1C w/. Hence w
is odd. Thus, by equations (3.1) and (3.7),

4z D 2m.xy C uy C xv/ D 2my.x C uC x.1C s//;

which yields
4z D 2my.uC xs/: (3.8)

Similarly, equation (3.2) gives

4.w C 1/ D 2muy.1C s/: (3.9)

Using equations (3.7), (3.8), we obtain

2mx.p C r/C 2mu.p C v/C 2q.1C z C w/ � 2zs

D �4qzw C 4zsw D 2my.uC xs/.�qw C sw/

D 2my.uC xs/.1C s/ D 2my.uC xs C us C xs/

D 2myu.1C s/ D 2muv:

Hence
2mx.p C r/C 2mup C 2q.z C w C 1/ D 2zs: (3.10)

Furthermore,

b2 D bb C b D B�1
�
r

s

�
C

�
r

s

�
D

�
vs

2mur C 2muvs C .1C 2w/�1s C s

�
:

Since b2 D
�
0
2m

�
, this yields 2mu.r C vs/C .1C 2w/�1s C s D 2m. Note that

2 j vs already follows by equation (3.7). Thus, multiplying with 1C 2w, we obtain
2mur C s C s.1C 2w/ D 2m. Whence

2m.ur C 1/ D 2s.1C w/: (3.11)

Up to here, we have not assumed that Soc.A/ D ha4i. Now we add this condi-
tion. Then 2mxy C .1C 2z/2 ¤ 1 in C2mC1 , that is, 4z.zC 1/¤ 2mxy. By (3.8),
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this is equivalent to 2my.uC xs/ ¤ 2mxy, that is, 2my.uC x.s C 1// ¤ 0. So
we obtain

y D 1; u D x.s C 1/C 1: (3.12)

Suppose that x D 1. Then u D s, and equation (3.10) gives

2m.p C r/C 2msp C 2q.z C w C 1/ D 2zs:

Equations (3.8) and (3.9) turn into

4z D 2m.s C s/ D 0 and 4.w C 1/ D 2ms.s C 1/ D 0:

If s is even, then equation (3.11) gives 2m.sr C 1/ D 0, hence 2 j sr C 1, a con-
tradiction. So s is odd. Hence 2mr C 2q.z C w C 1/ D 2zs, and thus

2mr D 2z.q C s/C 2q.1C w/ D 2q.1C w/ D 2.1C w/:

On the other hand, equation (3.11) yields

2.1C w/ D 2s.1C w/ D 2m.ur C 1/ D 2m.r C 1/;

a contradiction. So we get
x D 0: (3.13)

Since

ba D ba C a D

�
1 1

0 .1C 2z/�1

��
r

s

�
C

�
p

q

�
D

�
r C s C p

.1C 2z/�1s C q

�
;

the transformation b 7! ba changes the parity of s. So we can assume that s is
even. Then equations (3.7), (3.12) and (3.13) give u D v D y D 1, and equations
(3.8), (3.9) turn into

4z D 4.w C 1/ D 2m:

So 1C 2z D 1˙ 2m�1 and .1C 2z/2 D .1C 2z/�2 D 1C 2m. Hence

ba2 D ba
2

C a2 D

�
1 0

0 1C 2m

��
r

s

�
C

�
1

.1� 2m�1/q C q

�

D

�
r C 1

.1C 2m/s C .2� 2m�1/q

�
:

Since m > 3, using a possible transformation b ! ba2 if necessary, we can as-
sume without loss of generality that 4 j s. So equations (3.10), (3.11) become

2mp D 2.z C w C 1/
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and 2m.r C 1/ D 0, which yields r D 1. Thus

A D

�
1 1

0 1˙ 2m�1

�
; B D

�
1 1

2m 2mp � 1� 2m�1

�
:

Since

A3 D

�
1 1

0 1� 2m�1

�
;

we can assume, possibly after a transformation a 7! a3, that the sign in the matrix
A is positive. Applying the involution

˛ D

�
1 p

0 1

�
to the additive group C2 � C2mC1 , the vector

�p
q

�
is mapped to

�
0
q

�
, while

�
1
s

�
remains fixed. Furthermore,

˛A˛�1 D A; ˛B˛�1 D

�
1 1

2m �1 � 2m�1

�
:

So we can assume that p D 0, which yields

A D

�
1 1

0 1C 2m�1

�
; B D

�
1 1

2m �1 � 2m�1

�
: (3.14)

In particular,

.1C 2z/�3q C .1C 2z/�2q C .1C 2z/�1q C q

D .1C 2m�1/q C .1C 2m/q C .1 � 2m�1/q C q D 4q C 2m;

which gives a4 D
�

0
4qC2m

�
. Therefore, ba4 D

�
1

sC4qC2m

�
. Since m > 3, we can

replace b by some ba4i so that s D 0. Finally, by changing the generator of the
second factor in the additive groupC2 � C2mC1 , the matrices (3.14) are not altered,
and q is multiplied by an odd number. So we can assume that q D 1. Thus

a D

�
0

1

�
; b D

�
1

0

�
;

which shows that A is unique, up to isomorphism.
To show that A is a brace, we apply Proposition 6. Thus, if

pWC2 � C2mC1 � C2 � C4
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denotes the retraction map between the additive groups, we have to verify that
C2 � C4 is the additive group of a brace such that p

�
�p.a/.v/

�
D p.a/ � p.v/ and

p
�
�p.b/.v/

�
D p.b/ � p.v/ holds for all v 2 C2 � C2mC1 . By Remark (2) after

Proposition 6, this means that the reduced matrices

A D

�
1 1

0 1

�
; B D

�
1 1

0 3

�
(3.15)

make C2 � C4 into a dihedral brace B of order 8:

a D

�
0

1

�
; a2 D

�
1

2

�
; a3 D

�
1

3

�
;

b D

�
1

0

�
; ba D

�
1

1

�
; ba2 D

�
0

2

�
; ba3 D

�
0

3

�
:

Indeed, let pWC2 � C4� C4 be the homomorphism with kernel
®�
1
2

�¯
. Then the

matrices (3.15) induce automorphisms of C4 which make C4 into a cyclic brace
with Klein four-group as adjoint group. By Proposition 6, B is a brace.

4 The case ha2i � Soc.A/ with a � a … hai

By Theorem 3, it remains to consider the quaternion braces A of order 2mC2 with
m > 3 and a2 2 Soc.A/. Here we focus upon the adjoint group. To classify the
possible affine structures, we have to check equation (1.1) for the elements of Aı.
Note first that the adjoint action on the socle is by conjugation: for x 2 A and
s 2 Soc.A/, we have xs D .s � x/s D .x � s/x, which gives

x � s D xsx�1: (4.1)

Thus, if x; y 2 A and s 2 Soc.A/, then x � ys D
�
.s � x/ � y

�
.x � s/, hence

x � ys D .x � y/xsx�1: (4.2)

In this section, we consider the case a � a … hai.
Applying an automorphism of Aı which maps b to some bak , we can assume

that
a � a D b: (4.3)

Then a D a�1 � b D a � b, which gives

a � b D a: (4.4)

By equation (1.1), this implies that

b � a D ba2
m�2: (4.5)
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Suppose that b � b … hai, say, b � b D bak . Then

a � ba D
�
.a � a/ � b

�
.a � a/ D .b � b/b D bakb D bakb�1a2

m

D a2
m�k :

Hence ba D a � a2
m�k . If k is even, then (4.1) would imply that ba 2 ha2i. Thus k

is odd, and ba D .a � a/a2
m�k�1 D ba2

m�k�1, which yields 1 D 2m � k � 1 in
C2mC1 , a contradiction. So we obtain b � b D ar for some r 2 ¹0; : : : ; 2mC1 � 1º.
Since b � ar D b, the integer r must be odd. Hence equations (4.2) and (4.5) give
b D .b � a/a1�r D ba2

m�2a1�r D ba2
m�1�r . Thus

b � b D a2
m�1: (4.6)

By equations (4.1)–(4.6), the affine structure of A is uniquely determined:

ai � aj ´

´
aj for i or j even;
baj�1 for i; j odd;

ai � baj ´

8̂<̂
:
baj for i even;
ajC1 for i odd; j even;
ba2

mCj for i; j odd;

bai � aj ´

8̂<̂
:
a�j for j even;
ba2

m�j�1 for i even; j odd;
a2

m�j for i; j odd;

bai � baj ´

8̂<̂
:
a2

m�1�j for i; j even;
ba2

m�j�2 for i C j odd;
ba�j�2 for i; j odd:

Now it is easily checked that these equation define a brace. To show that they
define an action, it is enough to confirm that the equations are obtained by iterat-
ing the adjoint actions of a and b. To check the identity .x � y/x D .y � x/y, the
cases .x; y/ D .ai ; aj / and .bai ; baj / are particularly simple because we only
have to verify that .x � y/x is symmetric in i and j . Moreover, the three cases
of .x; y/ D .ai ; baj / are complementary to the three cases of .x; y/ D .baj ; ai /:
for example, if i is odd and j even, then .ai � baj /ai D ajC1ai , while

.baj � ai /baj D ba2
m�i�1baj D b2a2

mCiC1aj D aiCjC1:

So we have proved the following theorem.

Theorem 4. Let m be a positive integer. Up to isomorphism, there is a unique
quaternion brace A of order > 32 with a2 2 Soc.A/ and a � a … hai.
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5 The case ha2i � Soc.A/ with a � a 2 hai

Now let A be a quaternion brace of order 2mC2 withm > 3 such that a2 2 Soc.A/
and a � a D akC1 for some integer k. Then a D a � akC1, which shows that k is
even. Hence a D a � akC1 D .a � a/ak D a2kC1, which yields

a � a D akC1; k 2 ¹0; 2mº: (5.1)

If a � b D ai , then b D a � ai 2 hai, which is impossible. Hence a � b D ba` for
some integer `. If ` is odd, then

b � ba` D
�
.a` � b/ � b

�
.b � a`/ D

�
.a � b/ � b

�
.b � a/ba`�1b�1

D
�
.a � b/ � b

�
.a � b/aa`�1b�1 D

�
b � .a � b/

�
ba`b�1 D .b � ba`/a�`:

Hence ` is even, contrary to our assumption. Thus ` cannot be odd, which yields
b D a � ba` D .a � b/a` D ba2`. So we obtain

a � b D ba`; ` 2 ¹0; 2mº: (5.2)

Since .b � a/b D .a � b/a D ba`C1, this implies that

b � a D a�`�1: (5.3)

Hence hai is a right ideal of A. Since hai is of index 2, it is even a brace ideal. In
particular, this implies that b � b … hai. Assume that b � b D bar . The parity of r
is an invariant.

Proposition 7. A is a cyclic brace if and only if r is odd.

Proof. By [15, Proposition 10], hai is a cyclic brace. Assume that r is odd. Then
equation (5.3) gives

b D b � bar D
�
.ar � b/ � b

�
.b � ar/ D .ba` � b/.b � a/a1�r

D bara�`�1a1�r D ba�`:

Hence a � b D b, and thus

bar D b � b D ba � b D a�1b � b D a � bar D
�
.ar � a/ � b

�
.a � ar/

D .akC1 � b/.a � a/ar�1 D bakC1ar�1 D bakCr :

So we obtain a � a D akC1 D a, which shows that the brace hai is trivial. Since
b C b D .b � b/b D barb D a2

m�r generates hai, it follows that b generates the
additive group of A. The converse follows by [13, Proposition 12].
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So we can assume that r is even. If r � 2 .mod 4/, then

ba � ba D b � .a � ba/ D b �
�
.a � a/ � b

�
.a � a/ D b � .akC1 � b/akC1

D b � ba`akC1 D
�
.a`CkC1 � b/ � b

�
.b � a`CkC1/

D .ba` � b/.b � a/a�`�k D bara�`�1a�`�k D bar�k�1 D .ba/ar�k�2:

Hence, if we replace b by ba, the new r will be divisible by 4. Thus j ´ r
2

is even,
and baj � baj D b � baj D .b � b/a�j D bar�j D baj . Therefore, if we replace b
by baj , we obtain

b � b D b: (5.4)

Proposition 8. Let A be a quaternion brace of order 2mC2 with m > 3 such that
b � b D b. Then k; l 2 ¹0; 2mº are invariants for the isomorphism class of A.

Proof. Consider the group automorphism given by a 7! ai and b 7! baj with
i odd. Then ai � ai D a � ai D .a � a/ai�1 D akCi . Thus k is transformed into k0

with akCi D ai.k
0C1/. Because of (5.1), this shows that k0 D i�1k D k. So k is

invariant. Assume first that j is even. Then

ai � baj D a � baj D .a � b/aj D ba`Cj D bajai`;

which shows that ` is invariant.
Now let j be odd. Then

baj � baj D b � .a � baj / D b �
�
.aj � a/ � b

�
.a � aj /

D b � .akC1 � b/.a � a/aj�1 D b � ba`akC1aj�1 D b � ba`CkCj

D
�
.a`CkCj � b/ � b

�
.b � a`CkCj / D .ba` � b/.b � a/a1�`�k�j

D .b � b/a�`�1a1�`�k�j D ba�k�j :

To maintain equation (5.4), we have to assume that baj D ba�k�j . Since 2m j k,
this is impossible.

Thus it remains to verify that the four remaining cases of Proposition 8 can be
realized. Using equations (5.1)–(5.4), a straightforward calculation gives

ai � aj ´

´
aj for i or j even;
akCj for i; j odd;

ai � baj ´

8̂<̂
:
baj for i even;
ba`Cj for i odd; j even;
ba`CkCj for i; j odd;
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bai � aj ´

8̂<̂
:
a�j for j even;
a`�j for i even; j odd;
a`Ck�j for i; j odd;

bai � baj ´

8̂<̂
:
ba�j for i; j even;
ba`�j for i C j odd;
bak�j for i; j odd:

At some places, we made use of the fact that �k � k and �` � ` .mod 2mC1/
according to (5.1), (5.2). It is easily checked that the equations define an affine
structure on Q2m , hence a quaternion brace. Thus we obtain our main result.

Theorem 5. Let m > 3 be an integer. Up to isomorphism, there are 7 quaternion
braces of order 2mC2, namely,

(a) the cyclic brace A1,

(b) the brace A2 with jA2=Soc.A2/j D 8,

(c) the brace A3 with a2 2 Soc.A3/ and a � a … hai,

(d) the 4 braces Ai;j with i; j 2 ¹0; 1º, where a2 2 Soc.Ai;j /, a � a 2 hai and
b � b D b, given by the invariants k D 2mi and ` D 2mj in (5.1), (5.2).

Bibliography

[1] B. Amberg, P. Hubert and Y. Sysak, Local nearrings with dihedral multiplicative
group, J. Algebra 273 (2004), no. 2, 700–717.

[2] D. Bachiller, Classification of braces of order p3, J. Pure Appl. Algebra 219 (2015),
no. 8, 3568–3603.

[3] D. Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016),
160–176.

[4] D. Bachiller, F. Cedó and E. Jespers, Solutions of the Yang–Baxter equation associ-
ated with a left brace, J. Algebra 463 (2016), 80–102.

[5] Y. Benoist, Une nilvariété non affine, J. Differential Geom. 41 (1995), no. 1, 21–52.
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