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Abstract. In this paper, we introduce the notion of a quasi-powerful p-group for odd
primes p. These are the finite p-groups G such that G/Z(G) is powerful in the sense of
Lubotzky and Mann. We show that this large family of groups shares many of the same
properties as powerful p-groups. For example, we show that they have a regular power
structure, and we generalise a result of Ferndndez-Alcober on the order of commutators in
powerful p-groups to this larger family of groups. We also obtain a bound on the number
of generators of a subgroup of a quasi-powerful p-group, expressed in terms of the number
of generators of the group, and we give an example which demonstrates this bound is close
to best possible.

1 Introduction

It can be said that the modern study of finite p-groups began with the ground-
breaking paper of P. Hall, published in 1933 [7]. In this paper, Hall introduced the
notion of a regular p-group (see Definition 2.13), and he showed that these groups
have desirable properties and a theory which in some sense parallels that of abelian
groups. The study of families of finite p-groups with certain desirable properties
continues to this day.

The powerful p-groups, introduced by Lubotzky and Mann in [11], are another
well-studied family of groups with abelian-like properties. On the one hand, they
can be thought of as very similar to abelian groups, but on the other hand, they
can be thought of as close to a typical p-group (see Remark 2.10). Given this, it is
not surprising that the theory of powerful p-groups has found many applications,
as problems concerning typical p-groups can often be reduced to questions about
powerful p-groups. Perhaps the most widely celebrated application is Shalev’s
proof of the coclass conjectures [18]. However, the impact of powerful p-groups
is extensive and even stretches beyond finite p-groups (for more applications, see
Remark 8.1).

Given the widespread usefulness of powerful p-groups, it is natural to seek
a larger family of groups with similar properties. With this goal in mind, we intro-
duce quasi-powerful p-groups, and we extend many of the remarkable properties
of powerful p-groups to this family.
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Definition. Let p be an odd prime. We say that a finite p-group G is quasi-
powerful if G/ Z(G) is a powerful p-group.

This family is larger than that of powerful p-groups. For instance, it contains
all powerful p-groups and also all p-groups of nilpotency class 2, and therefore
unifies two large families of groups which are known to have abelian-like proper-
ties. Informally, we can think of groups in this family as being close to powerful
p-groups; in a powerful group, any commutator is equal to a pth power in the
group, whereas in a quasi-powerful group, any commutator is equal to the product
of a pth power and an element in the centre. It seems reasonable to expect that
many properties of powerful p-groups can be adapted to this family of groups,
and in this paper, we show this to be the case. It is our hope that quasi-powerful
p-groups will be useful as a tool in inductive arguments and reductions.

In order to state our main results, we need to recall some notation and terminol-
ogy. Let G be a finite p-group. The ith Omega subgroup of G is defined by

Qi(G)=(geG|g” =1).

Notice that this coincides with the set of elements whose order divides p if and
only if, for any two elements a,b € G, each of order at most pi , we have that
the order of the product ab is at most p’. Another equivalent formulation of this
is that exp ;(G) < p’. This is clearly true for abelian p-groups; however, this
is not true for p-groups in general. For example, €21(Dg) contains an element of
order 4. ‘ )

The ith Agemo subgroup of G is defined by G?' = (g?' | g € G). Sometimes
this subgroup is denoted as U;(G), hence the name. Note that the set of p’th
powers need not coincide with the group it generates. However, in the abelian
setting, they do coincide.

As the terminology and notation indicates, the Omega and Agemo subgroups
are in some sense dual to each other. Indeed, for an abelian p-group, we have that
|G : G?'| = |Q;(G)| for all integers i > 0.

These ideas motivate the notion of a regular power structure.

Definition. A finite p-group G has a regular power structure if the following three
conditions hold for all positive integers i :

G" ={g” | g <Gy, (1.1)

Qi(G)=1{geGlo(g) <p'}) (1.2)
G : G| = |2:(G). (1.3)
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We have seen above that abelian p-groups have a regular power structure. In [7],
P. Hall showed that regular p-groups have a regular power structure. For odd
primes p, powerful p-groups also have a regular power structure — the first prop-
erty (1.1) was established in [11], with the latter two properties (1.2) and (1.3)
proved by Wilson in [24] (using a result of Héthelyi and Lévai [8]). An alternate
and shorter proof of these last two facts is given by Ferndndez-Alcober in [3]. An-
other independent proof that (1.3) holds in powerful p-groups is given by Mazur
in [15].

In [5], Gonzdlez-Sanchez and Jaikin-Zapirain introduce the family of potent
p-groups (we recall this notion in Definition 2.11), and they show that this fam-
ily of groups has a regular power structure (this property is called power abelian
in [5]). Hence we see there is a sustained and significant interest not only in find-
ing families of finite p-groups with a regular power structure, but also in exploring
different approaches to the problem.

Our first result reveals that quasi-powerful p-groups have a regular power struc-
ture.

Theorem 1. Let p be an odd prime, let G be a quasi-powerful p-group, and let i
be a non-negative integer.

(1) Ifa,b € G both have order at most pi, then their product ab has order at
most p'.

(ii) The group generated by the p'th powers coincides with the set of p'th
powers.

(iii) |G : G”'| = [2(G)|.
In particular, G has a regular power structure.

We also show that if p > 3, then in fact every quasi-powerful p-group is potent
(see Remark 3.7); thus, for p > 3, the fact they have a regular power structure can
be deduced from the results in [5]. However, our proof is independent of this fact
and uses elementary methods, and thus is of interest in its own right. Moreover,
for us, the difficult and most interesting case is p = 3, and one can show that there
are quasi-powerful 3-groups that are not potent (see Example 3.2). Our approach
is uniform in the sense that it is effective for all odd primes.

It is well known that if G is a powerful p-group, then G? is also powerful.
Whether G? is powerful for all finite p-groups satisfying property (1.1) is an open
question, which has been verified for many families of p-groups. This question
was posed by Wilson in [24], and he noted that an affirmative answer to this ques-
tion would answer a question of Shalev [19, Problem 13] (see Question 4.8). Since
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quasi-powerful p-groups satisfy (1.1), Wilson’s question provides additional mo-
tivation for our next result.

Theorem 2. Let G be a quasi-powerful p-group. Then G? "isa powerful p-group
foralli > 1.

To understand finite p-groups, one needs to study the interactions between pow-
ers and commutators. For example, the defining properties of the families of groups
described above all involve some condition on commutators in terms of groups
of pth powers. Theorem 1 in [3] gives bounds on the order of a commutator in
a powerful p-group in terms of the components within the commutator (see The-
orem 2.6). These results turn out to be very useful when working with pth powers
in powerful p-groups, and played a key role in [22,23] to show that certain normal
subgroups of powerful p-groups are powerfully nilpotent (see Section 8.4).

In this paper, we give a generalisation of these bounds on the orders of commu-
tators.

The first result shows that, in a quasi-powerful p-group, the order of a commu-
tator is bounded by the order of its components.

Theorem 3. Let G be a quasi-powerful p-group and x,y € G. Then

o([x.y]) = o(y).

The next result allows us to say more if we know how elements can be expressed
as pth powers.

Theorem 4. Let G be a quasi-powerful p-group. If x,y € G are such that
o(x) < p'*! and o(y) < p',
then o([xP’, yP*1) < pi=i=* forall j.k > 0.

An interesting point to note is that we apply Theorem 1 (i) to prove Theorem 4.
The argument we use is quite general and can be applied to prove an analogous
result for potent p-groups for odd primes p; hence we can obtain the following
theorem.

Theorem 5. Let p be an odd prime and G a poteiklt p-group. Suppose x,y € G
with o(x) < p' Y and o(y) < p'; then o([x?’, y?"]) < p'~7/ =¥ forall j, k > 0.

One of the most abelian-like and important properties of powerful p-groups is
that the minimal number of generators of a subgroup is bounded by the minimal
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number of generators of the group. We prove an extension of this result for quasi-
powerful p-groups, and we show that the given bound is close to best possible. Let
d(G) denote the minimum number of generators for G.

Theorem 6. Let G be a quasi-powerful p-group with d(G) = r, and let H < G.
Then d(H) < Lr(r + 3).

Furthermore, we exhibit an infinite family of examples of groups G such that
d(G) = r but with a subgroup H such that d(H) = %r(r + 1). Hence the bound
in Theorem 6 is close to best possible.

We now say a few words on the layout of this paper. First, in Section 2, we recall
some preliminary results and definitions from the theory of finite p-groups. Next,
in Section 3, we introduce some basic properties of quasi-powerful p-groups. We
include an example to demonstrate that quasi-powerful 3-groups are a “new” fam-
ily with regular power structure. The section culminates with the proof of Theo-
rem 3. Section 4 is split into three parts, with each part corresponding to estab-
lishing a part of Theorem 1. In Section 5, we give an application of Theorem 1,
whereby we prove Theorem 4. Our argument can be adapted to potent p-groups (as
in Theorem 5). Our focus turns to the minimal number of generators of subgroups
in Section 6. In Section 7, we comment on the case when p = 2. We give an ex-
ample to show that if the definition of a quasi-powerful p-group for odd primes
were extended to p = 2, the groups need not have a regular power structure.

Notation. Our notation is standard. We denote the order of x € G as o(x). In
keeping with [3], we use the convention that if G is a p-group and x € G, then
we define the meaning of the inequality o(x) < p’ with i < 0 to be that x = 1.
We denote the exponent of G by exp G. All iterated commutators are left normed.
The terms of the lower central series of G are defined recursively as y;(G) = G
and yx+1(G) = [yx(G), G] for integers k > 1. We use bar notation for images in
a quotient group; it will always be made explicitly clear what the quotient group
under consideration is. We denote the minimal number of generators of a group G
by d(G). We denote the Frattini subgroup of G by ®(G).

2 Preliminaries

In all of what follows, we shall be dealing with finite p-groups, where p is an
odd prime unless explicitly stated otherwise. For the convenience of the reader,
we collect here some properties of p-groups which shall be used in the rest of
the paper. Most of the results are standard, but we draw the reader’s attention to
Theorem 2.6 and Theorem 2.12 which have appeared relatively recently in the
literature.
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2.1 Powerful p-groups

We recall from [11] what it means for a p-group to be powerfully embedded and
for a p-group to be powerful.

Definition 2.1. A subgroup N of a finite p-group G is powerfully embedded in G
if N? > [N, G] (for p = 2,if N* > [N, G]). A finite p-group is powerful if it is
powerfully embedded in itself, that is, if [G, G] < G? (for p = 2,if [G, G] < G*).

The following theorem demonstrates why powerful p-groups are so named —
because they are full of pth powers. Theorem 1 (ii) and Theorem 2 generalise this
theorem.

Theorem 2.2 ([10, Theorem 11.10]). Let G be a powerful p-group, and let k € N.

(1) The subgroup GP"* coincides with the set {x?k | xeG}of pkth powers of
elements of G; in particular, (GP' )P’ = Gr't’ foralli,j € N.

(i) G? “is powerfully embedded in G.

Lemma 2.3 ([10, Lemma 11.2]). A normal subgroup K in a finite p-group G is
powerfully embedded in G if [K,G] < K?[K, G, G].

Lemma 2.3 will be used in this paper when we wish to show that certain sub-
groups are powerfully embedded as it allows for a reduction to a simpler case by
assuming [K, G, G] = 1.

Lemma 2.4 ([10, Lemma 11.7]). If N is a powerfully embedded subgroup of G,
then, for any h € G, the subgroup H = (h) N is a powerful p-group, and we have
[H,H] < NP.

Lemma 2.4 will enable us to reduce problems about quasi-powerful p-groups
to powerful p-groups. We will show in Proposition 3.6 that, for a quasi-powerful
p-group G, the subgroup H = G? Z(G) is powerfully embedded in G. Hence,
for any g € G, we will know that (g, H) is a powerful p-group.

Lemma 2.5 (Interchanging Lemma [17, Lemma 3.1]). If M and N are powerfully
embedded subgroups in a finite p-group P, then [MP' . N?'] = [M, N]PHH for
alli, j € N.

Generalising the next theorem to the case when G is a quasi-powerful p-group
is one of the main aims of this paper. We remark that we are sometimes able to de-
ploy this theorem directly by reducing from a quasi-powerful group to a powerful
subgroup.
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Theorem 2.6 ([3, Theorem 1]). Let G be a powerful p-group. Then, for every
i > 0, the following statements hold.

() Ifx,y € G and o(y) < p', then o([x, y]) < p'.
(i) Ifx,y € G are such that o(x) < p't1 and o(y) < p', then

o([xpj, ypk]) < pi_j_k forall j, k> 0.

(iii) If p is odd, then exp Q;(G) < p'.

The following result was originally proved in [24], but alternative proofs are
given in [3] and [15].

Theorem 2.7 ([24, Theorem 3.1] and [3, Theorem 4]). Let G be a powerful p-
group. Then |G : GP'| = |Q;(G)| forall i > 0.

We will generalise Theorem 2.7 to the case when G is a quasi-powerful p-group
in Section 4.3.

We now list two of the most abelian-like properties of powerful p-groups with
respect to generators and subgroups.

Theorem 2.8 ([11, Theorem 1.12]). Let G be a powerful p-group, and let H < G.
Then d(H) < d(G).

Theorem 2.9 ([11, Theorem 1.11]). Let G be a powerful p-group withd(G) = d;
then G is a product of d cyclic groups.

We obtain variants of both of these results for quasi-powerful p-groups in Sec-
tion 6.

Remark 2.10. The properties of powerful p-groups given so far demonstrate many
of the abelian-like features of powerful p-groups. Thus, on the one hand, we can
think of powerful p-groups as being close to abelian groups. On the other hand,
it turns out that we can think of powerful p-groups as being close to a typi-
cal p-group. For example, by a result of Lubotzky, it is known that every finite
p-group appears as a section of a powerful p-group (see [14, Theorem 1]). Addi-
tionally, it is known that if all characteristic subgroups of a finite p-group G can be
generated by r elements, then G contains an r generator, powerful, characteristic
subgroup whose index is bounded in terms of p and r ([11, Theorem 1.14]).

We close this discussion on powerful p-groups by recalling a result from [5].
First we need the following definition.
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Definition 2.11. A finite p-group is potent if
[G,G] <G*forp=2 or y,—1(G) <GP for p > 2.

Note that, for p € {2, 3}, the definitions of potent and powerful coincide.
The next result will be a crucial ingredient in the proof of Theorem 1 (i).

Theorem 2.12 ([5, Theorem 5.1]). Let G be a powerful p-group and N a normal
subgroup of G. Then one of the following two properties holds.

(1) Foranyi,s,t > Osuchthatn =i +s+1t>1if pisodd,
[G.G)”" < [N?'.GP'|"'.

(i1) There exists a proper powerful subgroup T of G such that N < T.

2.2 Regular p-groups
Regular p-groups were introduced by P. Hall in his pioneering paper [7].

Definition 2.13. Let G be a finite p-group. We say G is a regular p-group if, for
every X,y € G, we have that x? y? = (xy)Pc for some ¢ € y>({x, y))?.

We now recall two results from the theory of regular p-groups. The first gives
a condition on when a group is regular, based on the nilpotency class of the group.
The second result tells us that, in a regular p-group, the order of a product of two
elements cannot exceed the order of the factors.

Theorem 2.14 ([7, Corollary 4.14, Theorem 4.26]). Let G be a finite p-group.
(1) If the nilpotency class of G is less than p, then G is regular.

(ii) If a and b are any two elements of the regular p-group G, then the order of
ab cannot exceed the orders of both a and b. In particular, for any i > 0,
the subgroup Q;(G) = {x € G | x?' = 1}.

One of the main results of this paper is a version of Theorem 2.14 (ii) for quasi-
powerful p-groups. For p sufficiently large, we will see that we can use Theo-
rem 2.14 (i) to reduce to the case that the group is regular. However, a different
argument is needed for p = 3.
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3 Basic properties of quasi-powerful p-groups

In this section, we define quasi-powerful p-groups and establish their basic prop-
erties.

Definition 3.1. Let p be an odd prime. We say that a p-group G is a quasi-
powerful p-group if G/ Z(G) is a powerful p-group.

We do not give a definition of quasi-powerful groups for p = 2, but in Section 7,
we give an example which suggests for p = 2 a different definition is needed.

The results proved in this section will be used throughout the rest of the paper.
Proposition 3.6 will sometimes allow us to reduce to a powerful subgroup within
a quasi-powerful group. This idea is used to prove Theorem 3 at the end of this
section.

Suppose that G/ Z(G) is powerful. Throughout the rest of this paper, we shall
let H = G?Z(G). Notice that [G,G] < H. From this, it is clear that powerful
p-groups and groups of nilpotency class 2 are quasi-powerful p-groups. However,
there exist quasi-powerful p-groups which are neither of those things. We now
give an example of a 3-group of nilpotency class 3 such that G/ Z(G) is powerful,
but G is neither regular nor powerful.

Example 3.2. Let G be the group with presentation

(a,b,c,d | a® b3.¢? . d% a4 = a.af = a*b.a® = a,
b¢ = ba®,b? = b,c% = ch7).

The following details are easily checked using GAP [26], where this group can be
constructed as SmallGroup(6561,86718) using the package SglPPow [21]. We
can describe the structure of this group as ((Zz7 X Z3) X Z37) % Z3. In addition,
we have Z(G) = (a®h~!,a°,¢°) and [G, G] = (a3, b). The group is not powerful
because b ¢ G3. However, G/ Z(G) is powerful since b € Z(G)G?3. Furthermore,
since for p = 3, the definitions of potent and powerful coincide, G is also not
a potent 3-group.

Moreover, one can show that this group is not a regular 3-group. For example,
let x = a'®c'8d and y = c. Then

)7 y% g (e, ).

Example 3.2 demonstrates a quasi-powerful 3-group which does not fall into
one of the families which are already known to have a regular power structure.

Before moving on, we make the following remark which will be used frequently
throughout the rest of this paper.
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Remark 3.3. It is easy to see that the property of being a quasi-powerful p-group
is preserved under taking quotients. However, it is not necessarily preserved under
taking subgroups. For instance, in Example 3.2, one can check that the subgroup
(a3,b,c,d) is not quasi-powerful.

We now begin by investigating the subgroup H = G? Z(G).
Lemma 3.4. For any g,h € G, we have that gPh? = jPz for some j € G and
z € Z(G).

Proof. Since G = G/Z(G) is powerful, in the quotient group, the product of pth
powers is a pth power, and so g? Z(G) - h?Z(G) = j?Z(G) for some j € G.
Thus g#h? = jPz forsome j € G and z € Z(G). o

Remark 3.5. This means that any 4 € H is of the form g?z for some g € G and
z € Z(G),since H = GPZ(G),soh = gf ...gPz, = gPz by repeated applica-
tion of Lemma 3.4.

We recall here that the Frattini subgroup behaves well under quotients, that is,
®(G/N) = ®(G)/N for all normal subgroups N of G. We make use of this fact
in the following proof.

Proposition 3.6. The subgroup H is powerfully embedded in G.

Proof. To begin, we show that GP[G, G] = ®(G) is powerfully embedded in G.
By Lemma 2.3, we may assume that [®(G), G, G] = 1. Consider some y € ®(G).
By Remark 3.5, as ®(G) < H,wecanwrite y = x?z forsome x € G,z € Z(G).
Let g € G, and consider

P

[v.8] = [xPz.gl = [xP. gl = [x.& x gl ]
= [x. gllx, g xP~[x, gllx. g, xP 2] [x, g]. 3.1)
We have p of the [x, g] terms and p — 1 of the [x, g, x] terms. Observe that
[x.g] €[G.G] < H.

Hence these terms of weight 3 are central because [®(G), G, G] = 1. Also notice
that this implies [x, g, x'] = [x, g, x]'. Hence (3.1) becomes

(v, 817 x, g ] PTDFETITH =[x, g]P[x, g, ]! /272,

As[x,g] € H and [x, g, x] € H and p is an odd prime, we see that [y, g] € ®(G)?.
It follows that [®(G), G] < ®(G)?, so we can conclude that (G) = GP[G, G]
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is powerfully embedded in G. It is clear that if N is powerfully embedded in G
and T is central, then N T is powerfully embedded in G, and so, in particular, we
have that H = ®(G)Z(G) is powerfully embedded in G. ]

Remark 3.7. As H is powerfully embedded in G, we can conclude that, for p > 3,
the group G is potent, since

Yp-1(G) < [H,G,...,G] < H? < G?.
———

p—3

Thus if p > 3, we could appeal to [5] to conclude that these groups have a regular
power structure. However, we will give an independent proof of this fact and deal
with all odd primes. Furthermore, we will see the most involved and interesting
case is when p = 3, and we have already seen that a quasi-powerful 3-group need
not be potent.

We now prove an analogue of Theorem 2.6 (i) for quasi-powerful p-groups, this
is Theorem 3.

Proof of Theorem 3. Let g, h € G with g of order at most p’. The commutator
[g. ] can be written as g~ g”, where both terms of the product are of order at
most p’. The group W = (g, H) contains [g, ] and g~! and so contains g”. The
group W is powerful by Lemma 2.4 and Proposition 3.6. Then, by Theorem 2.6 (i),
we have that o(g~! - g") is at most p’. That is o([g, h]) < p". ]

Remark 3.8. In fact, this property is true for any group G containing a powerfully
embedded subgroup N with [G,G] < N.

Theorem 3 will be used frequently throughout the remainder of the paper.

4 Quasi-powerful p-groups have regular power structure

4.1 The exponent of omega subgroups

In this section, our aim is to prove that exp ; (G) < p’. This can be stated equiv-
alently as Theorem 1 (i).

We will see that, by using properties of powerful p-groups and regular p-
groups, we can relatively quickly deal with the case of primes greater than 3.
However, when p = 3, we can no longer assume the subgroup ;(G) is regu-
lar, and the situation becomes more involved.
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Lemmad4.1.If x,y,z,w € G, where x, y, z are elements of order p, then
[x,y,z,w] = 1.

Proof. We use bar notation to denote the image of an element in the quotient
group, G = G/Z(G). In particular, as G is powerful and X, y,Z are of order at
most p, then [X, 7] = g? for some g € G with g of order at most p% by Theo-
rem 2.6 (i). Then, by Theorem 2.6 (ii), setting i = 1, it follows that

[x,y.Z] = [gP.Z] = 1.

Lifting back up to G, this means that [x, y, z] € Z(G) and thus [x, y,z,w] = 1.
O

Lemma 4.2. The nilpotency class of 21(G) is at most 3.

Proof. We note that Q;(G) is generated by the elements in G of order p, say
ai,...,ar. By Lemma 4.1, it is clear that any commutator of weight 4 in these
must be trivial. O

Proposition 4.3. If p is a prime such that p > 3, then Q1(G) has exponent at
most p.

Proof. As p is a prime greater than 3, Lemma 4.2 implies that p is greater than
the nilpotency class of €21 (G). Then Theorem 2.14 implies that 21 (G) is regular,
and in particular, the product of two elements of order p has order at most p. The
result follows. o

We now begin to deal with the difficult case of p = 3. We will eventually see
that we can reduce to the case where G is a quasi-powerful 3-group with cyclic
centre and Q1 (G)? < Z(G).

Lemma 4.4. Let G be a finite 3-group of nilpotency class at most 3 such that
G/ Z(G) is powerful. Then exp Q21(G) < 3.

Proof. Leta,b € G both be of order 3. We expand (ab)?, making use of the fact
that the nilpotency class is at most 3.

(ab)® = a®b3[b,al’[b,a, b)’[b, a.al.

By Theorem 3, we know that any commutator containing a or b has order at
most 3. Hence we obtain

(ab)? = [b,a,b)*[b,a,a] = [b, [b,a]][[b. a]. a].
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As G/ Z(G) is powerful, we can write [b, a] = g3z for some g € G and z € Z(G).
Then

[b.b.al] = [b.g%2) = [b.8%] = [b.g[b. g1 [b. g]¥
= [b, gllb. gllb, g. g1lb, glb. g. &°) = b, g’ [b, g. 8> = 1,

where again we use that the nilpotency class is at most 3 and the fact that any
commutator containing the element b has order at most 3. That the commutator
[[b, a],a] is trivial follows in a similar way. Thus we can conclude that if a and b
have order at most 3, then so does ab, and hence exp 21(G) < 3. o

Next we explain how we can make the reduction to the case where the centre of
our quasi-powerful 3-group G is cyclic and that Q(G)? < Z(G) in our goal to
show that exp Q1(G) < 3.

Suppose that a 3-group G is a quasi-powerful group of smallest order such that
the exponent of (G) is greater than 3. In this case, there must exist elements
a and b in G both of order 3 such that o(ab) > 3. Let N < Z(G) be a subgroup
of order p. Then G/N is a quasi-powerful group of smaller order, and so, in this
group, we must have that abN has order at most 3; in other words, (ab)> € N.
This allows us to assume that Q1(G)? < Z(G). Furthermore, if the centre of G
is not cyclic, then it would contain two distinct subgroups N; and N» of order 3
such that Ny N N, = 1. Then we would be able to conclude that (ab)? were in
both, and thus (ab)3 = 1. Thus, for what follows, we consider a quasi-powerful
3-group G of minimal order such that exp 1(G) > 3, and therefore, we may
assume the centre is cyclic and that Q1(G)? < Z(G).

Proposition 4.5. Let G be a quasi-powerful 3-group. Then the exponent of Q1(G)
is at most 3.

Proof. By the discussion above, we can assume that G has cyclic centre and that
Q1(G)? = Z(G).

Consider the subgroup J = Q1(G)Z(G). Notice that J is normal (in fact char-
acteristic) in G. We use bar notation to denote images under the natural map cor-
responding to quotienting by Z(G). Consider the image J of J in G = G/Z(G).
The subgroup J is normal in the powerful group G. Then, by Theorem 2.12, we
have two cases to consider.

In the first case, we can assume that we have [G, G]? < [J?, G]. Notice that
JP =1, since J? < Z(G). Hence [G,G]? = 1. Now, using the Interchanging
Lemma 2.5, since G is powerful, we have that

[G.G,G] <[G?,G] =[G.G]? = 1.
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Hence G has class at most 2, and so G has class at most 3. Then, by Lemma 4.4,
we obtain the desired result.

In the second case, we can assume that J is contained in some proper powerful
subgroup of G. Call this subgroup P. Then, lifting up to the proper subgroup P
of G, where Q1(G) < P, we see that

[P, P] < P3(Z(G)N P) < P3Z(P).

Hence P is a quasi-powerful group of order strictly less than G. Therefore, the
exponent of €21(P) is at most 3. In particular, the product of two elements of
order 3 in P has order at most 3. Then, since Q1(G) < P, we conclude that the
exponent of 21(G) is at most 3. |

Thus we see that, for any odd prime p, we have that exp 2 (_G) < p. This now
enables us to prove the more general result that exp Q2;(G) < p' for any i and any
odd prime p — this is Theorem 1 (i).

Proof of Theorem 1 (i). Let G be a quasi-powerful p-group andi > 0. We proceed
by induction on the order of G. The result is clearly true for groups of order p°.
Now suppose that |G| > p and that the claim holds for all quasi-powerful p-
groups of smaller order. Notice that if ¢ € G with a having order p/ < p', then
aP’ ™ e Q1(G), and thus aQ(G) has order at most p/~1 < p'~1 in S;EGg It
follows that

Q2 (G) < Qi—l( G )
Q1(G) Q1(G)

Then, by the inductive hypothesis, since %(G) is a quasi-powerful p-group of

smaller order, we have that the exponent of Qi—l(%@)) is at most p' !, and

consequently, the subgroup g’l Eg% has exponent at most p’~!. Then, lifting back

up to G, we see that

QiGN < 21(6),

and by Proposition 4.3 and Proposition 4.5, it follows that Q; (G P=1, o

4.2 pth powers

In this section, we prove properties about the groups of p’th powers in quasi-
powerful p-groups. We will prove Theorem 1 (ii) and Theorem 2.

We first prove that, just like in a powerful p-group, the product of pth powers in
a quasi-powerful p-group is equal to a pth power. This is the first step in proving
Theorem 1 (ii).
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We will need to recall the following formulation of the collection formula of
Philip Hall (see [16, Exercise 1.2]). If G is a group, x, y € G and n € N, then

)P = x?"y?" (mod ya (T yp(T)?" ™ . ypn(T)),  (4.1)
where T = (x, y).

Theorem 4.6. Let G be a quasi-powerful p-group and p an odd prime. Then
G? ={g”|g G}

Proof. Leta,b € G. We recall that H = G? Z(G). Using the collection formula
(4.1), we have
(ab)? = a?bPy(T)Pyp(T),

where T' = (a, b). Now notice that y»(T) < y2(G) < H, and so y»(T)? < H?.
Also notice that, since p > 3, we have that y,(T) < [T, T,T] < [H,T] < H? be-
cause H is powerfully embedded by Proposition 3.6. Now, since H is powerful by
Proposition 3.6, H? contains precisely the pth powers of elements of H. Thus we
have that (ab)? = a?bPh? for some hy € H. Then (ab)? - h|? = aPbhP. Now
let W = (ab, H). By Lemma 2.4 and Proposition 3.6, it follows that W is power-
ful, and so (ab)? - h{ ¥ = w? for some w € W. Thus a?b? = w?. o

In [24, p. 142] and [25, Question 5.2.4], L. Wilson raises the following question.

Question 4.7. If G is a p-group (with p odd) and the pth powers of elements of G
form a subgroup, must this subgroup be powerful?

Wilson argues how an affirmative answer to this question would in turn provide
an affirmative answer to a question of A. Shalev [19, Problem 13].

Question 4.8. Let G be a finitely generated pro-p group, and suppose that, for
each x,y € G, there is z € G such that xPyP = zP; does it follow that G is
p-adic analytic?

This provides some motivation for our next results, as in light of this question it
is natural to ask whether G? must be powerful for quasi-powerful p-groups. We
will need the following version of Philip Hall’s commutator expansion formula
(see [16, Exercise 1.2]). Let G be a group, x, y € G and n € N; then

n—1

[x, 17" = [xP",y] (mod ya(M)P"y,(M)P" .. ypn(M)), (4.2)

where M = (x, [x, y]).
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Theorem 4.9. Let p be an odd prime. If G is a quasi-powerful p-group, then G?
is powerful.

Proof. We wish to show that [G?, GP] < (GP)?. By Lemma 2.3, we may assume
that [GP,GP,GP] = 1. Also, as (Gl’)l”2 < (GP)P, we can quotient by (G”)"’2
and in particular can assume that G has exponent at most p3. Consider x,y € G.
We will show that [x?, yP] = [x, yP]P. Using the collection formula (4.2), we
have

[x?,yP] =[x, yP1? mod y2(M)Py,(M),

where M = (x, [x, y?]). We need to show that y»(M)? =1 and y,(M) = 1.
First we show that y,(M)? = 1.

Recall that, by Theorem 1 (i), the product of elements of order p has order at
most p, and therefore, we only need to show that the generators of y»(M) have
order at most p to be able to conclude that all elements have order at most p.
Notice that [x yP] = gl’ z for some g € G and z € Z(G). As the exponent of G
is at most p3, we can assume that gl’ has order at most p, and then, by Theorem 3,
it follows that any commutator which includes the element g~ as a term has order
at most p. Therefore, it follows that every element in y, (M) has order at most p,
and so yo(M)? = 1.

Next we show that y,(M) = 1 Observe that, because G G/Z(G) is pow-
erful and of exponent at most p>, we must have that [GP G] < Z(G). Using
again the fact that we can write [x, y?] = gp z and that p > 3, we have that
yp(M) < [GP”.G.G] = 1.

Thus we have that [x?, y?] = ([x, y?])? and [x, yP] € G? since G? is normal,
and so [x?, y?] € (GP)? as required. o

Remark 4.10. Although G2 is powerful, G? may not be powerfully embedded
in G (see Remark 8.3).

We are now able to apply the results of this section to prove Theorem 1 (ii) and
Theorem 2.

Proof of Theorem 1 (ii). For k = 1, the claim follows from Theorem 4.6. Observe
that, for k > 2, by Theorem 4.9, we know that G? is powerful, and then, by The-
orem 2.2 (i), we know that, for a powerful group, the set of pk ~lth powers and the
group generated by pk ~lth powers coincide. In particular, we have that

-1

G” = (¢" |geG)= (""" |xeGP) =GP

:{xpk_1|xer}:{xp'|xeG}. O
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Proof of Theorem 2. By Theorem 4.9, we know that G? is powerful, and so, by
standard properties of powerful p-groups, it follows that (G? )P is powerful for
all i > 0. By Theorem 1 (ii), we know that (G?)?" = Gr't. o

For an alternate way to deduce Theorem 1 (ii) and Theorem 2, see Remark 8.6.

4.3 The index of agemo subgroups

We now move on to proving the final condition to show that quasi-powerful p-
groups have a regular power structure. Our arguments in this section rely heavily
on the results of L. Wilson in [24].

Recall that a p-group G is said to have a regular power structure if the following
three conditions hold for all positive integers i:

G” ={g" | g€ G} (1.1)
Qi(G)={geGlo(g) <p'} (1.2)
G : G”'| = 2:(G)]. (1.3)

The first two conditions have been established for quasi-povzerful p-groups. Thus
all that remains is to prove the final condition, that [G : G?" | = |Q;(G)]|. To be-
gin, we prove a base case, when k = 1.

Proposition 4.11. Let G be a quasi-powerful p-group; then [G : GP] = |21(G)].

Proof. Suppose the result holds for all quasi-powerful p-groups of smaller order.
We consider two cases depending on the exponent of Z(G). For the first case,
suppose that Z(G) has exponent p. Here we can assume there must be an ele-
ment x € Z(G) of order p, with x ¢ G?; otherwise, G would be powerful, and
we are done. Let N = (x) and G = G/N. Suppose |G| = p". Notice first that
|G?| = |GP|, since N N GP? = {1}. We need to consider Q1 (G). We have

Q1(G)/N < Q1(G).
If X € Q1(G)butx ¢ Q1(G), it would mean that x? € N\ {1}, butthen N < G?,
a contradiction. Thus we must have 21(G)/N = Q1(G). Then

G| [21(G)]

|G : GP| = |Q1(G)|, thatis, = ,
INIIGP| |V

and the result follows.
Now, for the second case, suppose that the exponent of Z(G) is greater than p.
In this case, we can find some element z of order p? such that z is central in G.
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Let N = (z?). Since N < G?, we have |G : G?| = |G : G?|. Thus, if we can
show that |21(G)| = |221(G)|, then we are done.

Observe that z? is of order p, so N < Q21(G). The image K = 21(G)/N of
Q1(G) in G is a subgroup of 1 (G) of order |K| = |Q21(G)|/ p. Note that z is not
in 21(G), as its order is pz. Thus Z is not in K. However, Z is a central element
of order p, so K (Z) is a subgroup of Q1(G) of order p|K| = |Q1(G)|. We now
show that Q1(G) = K(zZ) = Q1(G)(z)/N.

Suppose that X € ;(G) but ¥ ¢ ©1(G)(z)/N. Then we have x? = z*? for
some 0 < A < p, but then (xz=*)? = xPz=*? =1, and so xz~* € Q1(G), but
then ¥ € Q1(G)(z)/N. Hence we can conclude that |21(G)| = |Q1(G)|, and the
result follows. |

We now prove the more general result by induction. We remark that our proof
below follows Wilson’s proof of [24, Theorem 3.1] very closely. Moreover, we
will call upon the following result of Wilson taken from [24]. We will let O, be the
class of all p-groups for which 2 (G) is the set of elements of order dividing p*
for all k.

Lemma 4.12 ([24, Lemma 2.1]). Let G be in Op. Then, for all m and k,
Qr(G/2m(G)) = Ln1k(G)/ Qm(G).
We are now in a position to establish Theorem 1 (iii).

Proof of Theorem 1 (iii). We use induction on k. We have established the base case
in Proposition 4.11. Assume now that the result holds for k. We wish to find the
order of GP*". By Theorem 1 (ii), we have that 6P = (Gp)l’k. As G? is
powerful, we can apply Theorem 2.7 and conclude that

1GP | = 167 - 4 (GP)). (4.3)

By Theorem 1 (i), we know that the exponent of Q24 (G) is at most pk, and so
we have Qi (G?) = Qi (G) N GP. Then

GP/Qu(GP) = GPQ(G)/Q(G) = (G/Q(G))”.

Thus
IG? : Qr(GP)| = |(G/ Q2 (G))|. (4.4)

Now, since quotients of quasi-powerful p-groups are quasi-powerful p-groups,
we have that G/ Q2 (G) is a quasi-powerful p-group. We can apply the base case,
Proposition 4.11, to find that

[(G/Qu(G)P] = |G/ Qu(G) : Q1(G/ Qi (G))].
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By Lemma 4.12, we have Q1(G/Q;(G)) = Qr+1(G)/ 2k (G). Thus we con-
clude that

I(G/Q(G)P] = |G/ Q2(G) : Qu41(G)/ e (G)] = |G = Qe 1(G)],

pk+l

and hence |G | =1G : Qi41(G)| by (4.3) and (4.4). |

Thus we have proved Theorem 1 (iii). Hence we have now proved all three parts
of Theorem 1 and thus have shown that quasi-powerful p-groups have a regular
power structure for odd primes p. We now know that the families of p-groups (for
odd primes p) with a regular power structure include regular p-groups, powerful
p-groups, potent p-groups and quasi-powerful p-groups.

S An application

We now seek to further generalise the results from [3] on the orders of commuta-
tors in powerful p-groups. We will see how Theorem 4 follows as a consequence
of Theorem 1 (i).

Proof of Theorem 4. The proof is by induction on the order of G. The claim is
clearly true for the trivial group. Now suppose that |G| > p and that the claim
holds for all quasi-powerful groups of smaller order. Let x, y € G with

o(x) < p't' and o(y) < p'.

Consider the images of x and y in %, which we shall denote X and y. Then
o(¥) < p' and o(7) < p'~!. Then, by the induction hypothesis, we have that

o([¥? . §7"]) < pi 1k,

Then, lifting up, we see that

e’ P P e 21().
We know that 21 (G) has exponent p by Theorem 1 (i). Thus [xpj, yl’k] has order
at most p'—/ k. ]

Thus we have established Theorem 4.

Remark 5.1. In fact, the argument in the proof of Theorem 4 will work for any
family of p-groups where the property that exp 21(G) < p is maintained when
taking quotients. In particular, the argument works unchanged for potent p-groups
for odd primes p. Hence we can obtain Theorem 5.
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6 Minimal generation of subgroups

In this section, we consider an r-generator quasi-powerful p-group G and show
that the number of generators of any subgroup of G can be bounded by a quadratic
function in terms of r only. We begin by recalling one of the most abelian-like
properties of powerful p-groups, that, for a powerful p-group, the minimal number
of generators of a subgroup cannot exceed that of the group (Theorem 2.8). It is
natural to ask if this can be extended to all quasi-powerful p-groups.

We now recall a well-known family of groups of nilpotency class 2, as an ex-
ample to demonstrate that, for r-generator quasi-powerful p-groups, the minimal
number of generators of a subgroup can grow quadratically in r.

Example 6.1. In [9, Theorem 2.1], G. Higman shows that, for any given positive
integer r and prime p, there is an r-generator p-group H of nilpotency class 2 (and
thus quasi-powerful) such that ®(H) = Z(H ). Furthermore, ®(H ) is elementary
abelian of order p%’(”'l). In particular, d(P(H)) = %r(r + 1). These groups are
the p-covering groups of the elementary abelian p-groups.

We will establish an upper bound on the minimal number of generators for
subgroups of quasi-powerful p-groups. We are able to reduce to the case where
the group is of nilpotency class at most 2. We will need to bound the number of
generators of the derived subgroup of G. To do this, we will use the following
theorem due to Witt (see [6, Chapter 11, Theorem 11.2.2]).

Theorem 6.2 (Witt). The number of commutators of weight n in r generators is
given by

LS @y,
n

dln

where ju(m) is the Mobius function.

We can now prove the main result of this section.

Proof of Theorem 6. We begin by identifying the smallest subgroup K of Z(G)
such that G/ K is powerful. We know that [G, G] < G? Z(G). Let K be the small-
est subgroup of Z(G) such that [G, G] < G? K. By the minimality of K, we have
that G” N K < ®(K). That is, any element of G” N K would be redundant as
a generator of K.

Consider the quotient group G = G/K. The group G is a powerful p-group,
and so d(H) < d(G) = r. We also know that K is abelian, and so the number of
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generators of any subgroup of K cannot exceed d(K). Thus we obtain
d(H) <r +d(K). (6.1)

We now seek to bound the minimal number of generators of K. We observed
previously that any element of G” N K would be redundant as a generator of K,
and thus we may assume that G = 1. We have that [G, G] < GPZ(G) = Z(G),
and so we can assume that G is of nilpotency class at most 2.

Consider the series

K>KN[G,G]=>1.

We see that
K KNG N(KﬁG)[G,G]< G

KN[G.G]  (KNG)N[G,G] [G.G] ~[G.G]

It is clear that G/[G, G] is an r-generator abelian group, and so

K
d(Kﬂ[G,G]) =7

Similarly, K N [G, G] < [G, G]. The group [G, G] is central, and hence abelian.
Furthermore, it is generated by the commutators of weight 2 in the generators of G;
by Theorem 6.2, there are %r(r — 1) of these. Hence d(K N [G, G]) < %r(r —1).
It follows that

d(K)<r+ %r(r —1)= %r(r + 1).

Then, using (6.1), we see that
1 1
d(H)fr—l—Er(r—}—l):Er(r—f—fS). i

The infinite family of groups given in Example 6.1 demonstrate that this bound
is close to best possible.

We recall Theorem 2.9, that, for a powerful p-group G with d(G) = d, we
can write G as a product of d cyclic subgroups. As an immediate consequence of
Theorem 6, we can obtain the following generalisation.

Corollary 6.3. Let G be a quasi-powerful p-group with d(G) = d. Then G is
a product of at most d + %d(d + 3) cyclic groups.

Proof. The result follows from the facts that G = G/Z(G) is a powerful p-group
with d(G) < d, and that Z(G) is an abelian group of rank at most %d(d + 3) by
Theorem 1 (i). O
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7 A remark on the even prime

It often happens that the prime p = 2 behaves differently to the odd primes. For
example, for powerful 2-groups, L. Wilson showed in his thesis [25] that

exp 2;(G) < i+l

which is best possible (an alternate proof of this bound is given in [3, Corollary 2]).
If we took the same definition for quasi-powerful 2-groups as for odd primes, we
see that condition (1.2) need not hold for quasi-powerful 2-groups. The following
example gives a 2-group G such that G/Z(G) is powerful. This example shows
how spectacularly the regular power structure properties (1.1), (1.2) and (1.3) can
fail for quasi-powerful 2-groups if we take the definition to be the same as in the
case of odd primes.

Example 7.1. Let G be the 2-group given by the presentation
(a,b,c,d, e | a?. b8, c?,d*, 2, la,b],la,cl,[a.d],[a,e] = b*,
[b,c],[b,d] = b%c,[b,e] = b*,[c.d] = b*,[c.e],[d.e])
The structure of the group can be described as
(Za x ((Zg x Z2) X Z4)) X L».

All three of the conditions (1.1), (1.2), (1.3) fail to hold in this group:

(a) In this group, there are 8 distinct squares; however, |G2| = 16. For instance,
¢ is not the square of any element, but ¢ € G2.

(b) We have that exp 21(G) = 4. Note that 5% € Q1(G).
(c) We have |G : G?| = 16 but |Q(G)| = 64.
These computations can be readily checked. This particular group can be con-

structed in GAP [26] as SmallGroup(256,13326).

Hence we see that the “nice” results which hold for odd primes do not hold
for 2-groups G such that G/ Z(G) is powerful. It would be interesting to see how
much of the theory could be salvaged with a modified definition.

8 Further remarks

8.1. We discuss here a few interesting applications of powerful p-groups, beyond
what was mentioned in the introduction. In the introduction, we alluded to the fact
that powerful p-groups are in some sense close to abelian groups. For an excel-
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lent example of a case when the abelian condition can be dropped, and instead the
theory of powerful p-groups can be deployed, see the paper [4]. For applications
of powerful p-groups to the study of automorphisms of finite p-groups, see the
excellent book [10]. For an application of powerful p-groups to the study of En-
gel groups, see [1]. Powerful p-groups have applications beyond finite p-groups;
for instance, they also have found uses in the study of p-adic analytic groups
(see [2,12]).

8.2. In this paper, we find a new family of 3-groups which has a regular power
structure. We now know of several families of groups with regular power structure,
and so it is natural to ask, can all groups with a regular power structure be classified
into a finite number of families, and how does this classification depend on the
prime p?

8.3. The following example is of a quasi-powerful p-group G such that G2 is not
powerfully embedded in G.

Example 8.1. Let p be an odd prime, and let G be the quasi-powerful p-group
given by the following presentation:

{a,b,c|aP’ bP’ cP’ [b,a]l = c,[c,b] = 1,[c.a] = (cP)71).

This group can be described as a semidirect product of the form (Cp2 x Cp2) X Cpp2.
In this group, c¢? and b?[b, a] are central, and so one can see that this group is
quasi-powerful. It is then easy to see that GP* =1. However, [a?,b] = ¢?, and
so [G?,G] # 1, and so G? is not powerfully embedded in G. For p = 3, this
group can be constructed in GAP as SmallGroup(729,30).

Thus we see that G? must be powerful by Theorem 4.9 but need not be power-
fully embedded.

8.4. We briefly recall some notions from the theory of powerfully nilpotent groups,
introduced in [20]. The theory of powerfully nilpotent groups is not fundamental to
this paper; we will just observe in Remark 8.5 that a certain characteristic subgroup
is powerfully nilpotent.

In [20], the notions of a strongly powerful and a powerfully nilpotent group are
introduced. Loosely speaking, a powerfully nilpotent group is a powerful p-group
admitting a special kind of central series.

The reason why we may want to know that a group is powerfully nilpotent,
is because the structure of these groups is very rich. For example, associated to
every powerfully nilpotent group is a quantity known as the powerful coclass, and
it turns out that the rank and exponent of a powerfully nilpotent group can both be
bounded by this quantity (for details, see [20]).
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Definition 8.2. A finite p-group G is strongly powerful if [G, G] < Gr’.

In [20, pp. 81-82], we show that if a group is strongly powerful, then it follows
that it is powerfully nilpotent.

8.5. In Section 3, we defined the subgroup H = G? Z(G). In fact, the subgroup
H is strongly powerful and thus is powerfully nilpotent. As H is powerfully em-
bedded in G, it follows that [H, G,G] < H p? Hence, when we show that H is
strongly powerful, we will work modulo [H, G, G].

Proposition 8.3. H is strongly powerful.

Proof. Lethyi,hy € H. By Remark 3.5, we can write 11 = gle and hy, = gé’zz.
Then

[hi.ha] = [gVz1.8522] = [¢7. 851 = [gV.82...g2] mod [H,G,G].
——
P

Then expanding and using that g7 € H and working modulo [H, G, G] yields
[h1.h2] = [g1.g2]7 mod [H.G.G].

Now, since H is powerfully embedded in GZ, we have that [g7, g2] € HP. Thus
[g{’, g2]? € (HP)P,and as [H, G, G] < HP?", the result follows. O

8.6. In [13], the notion of powerful class is introduced (not to be confused with
powerful nilpotency class), and we recall the definition.

Let G be a finite p-group, and denote the maximal powerfully embedded sub-
group of G by 1(G). The upper n-series of G is defined by 19(G) = 1, and
ni(G)/ni—1(G) = n(G/ni—-1(G)). The least ¢ such that n,(G) = G is termed the
powerful class of G. If ¢ < p, then G is said to be of small powerful class.

Theorem 1 of [13] states that if a group has small powerful class, then the prod-
uct of p"'th powers is again a p”th power, and furthermore, G? is powerful.

It turns out that quasi-powerful p-groups have small class. Indeed, by Propo-
sition 3.6, it follows that H = G? Z(G) is powerfully embedded in G. Thus, by
considering the series 1 < H < G, we see that G has powerful class at most 2.
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