Abstract
Two-component systems (TCS) are the most prevalent gene regulatory mechanism in bacteria. A typical TCS is comprised of a histidine kinase (HK) and a partner response regulator (RR). Specific environment signals lead to autophosphorylation of different HKs, which in turn act as phosphoryl donors for autophosphorylation of their partner RRs. Nonpartner HKs and RRs also interact, giving rise to cross regulation among TCSs in response to diverse signals.
PhoR (HK) and PhoB (RR) constitute the TCS for detection of environmental (extracellular) inorganic phosphate (Pi). The PhoR/PhoB TCS controls the expression of a large number of genes for acquisition of alternative phosphorus sources, including phoA, which encodes the non-specific phosphohydrolase bacterial alkaline phosphatase (Bap). Cross activation of PhoB by the nonpartner HK CreC is now a classic example of cross regulation among TCSs. A systematic search for other cross talking HKs revealed five additional HKs that activate (phosphorylate) PhoB (J. M. B. and B. L. W., unpublished data).
Examination of cross activation of PhoB by these non-partner HKs by flow cytometry at the single-cell level revealed a bimodal, “all-or-none,” distribution pattern for expression of a phoAp-gfp (green fluorescent protein) reporter fusion. Although the basis of the observed stochastic behavior is unclear, it seems to reflect an inherent property of TCSs. We propose that cells exploit the stochastic character of TCSs to achieve nongenetic (epigenetic) diversity within genetically homogeneous cell populations in order to facilitate adaptation to environmental changes.
© 2005 The Author(s). Published by Journal of Integrative Bioinformatics.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.