Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter November 10, 2016

On the security of joint signature and encryption revisited

  • Mridul Nandi and Tapas Pandit EMAIL logo

Abstract

In 2002, An et al. [1] proposed three generic conversions of signcryption, โ„ฐโขtโข๐’ฎ, ๐’ฎโขtโขโ„ฐ and ๐’žโขtโขโ„ฐ&๐’ฎ from the primitive encryption scheme and signature scheme. But, the security proof of confidentiality in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm was ambiguous. In this paper, we revisit these paradigms again and provide a more transparent proof for the aforementioned paradigm. None of these paradigms preserves both stronger securities: strong unforgeability and IND-CCA security. We extend the above paradigms to new signcryption paradigms, โ„ฐโขtโข๐’ฎโขtโข๐’ฎ, ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ and ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ, by applying one-time signature (OTS) cautiously at the outside layer. In these new paradigms, the stronger security of the primitive encryption and signature schemes are maintained. We also obtain a new paradigm, โ€œEncrypt and Sign then Sign (โ„ฐ&๐’ฎโขtโข๐’ฎ)โ€, which is surprisingly better than the ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ paradigm in all aspects except that โ„ฐ&๐’ฎโขtโข๐’ฎ does not guarantee the non-repudiation. Moreover, the IND-CCA security and strong unforgeability of the proposed signcryptions are achieved from the IND-gCCA secure encryption scheme and weak unforgeable signature scheme, respectively. Further, we extend these paradigms to capture signcryptions in attribute-based setting, also known as attribute-based signcryption (ABSC). We show that the IND-CCA security and strong unforgeability under chosen message attack of ABSC can be obtained from IND-CPA security of ABE and unforgeability under no message attack of ABS, respectively. Furthermore, our generic constructions are applicable to a combined setup, where the public parameters and keys for the primitives ABS and ABE are identical. The security of all the generic constructions is proven in the standard model.

MSC 2010: 94A60; 94A62

1 Introduction

Signcryption is a primitive, where both the message confidentiality and authenticity are taken care simultaneously. The concept was proposed by Zheng [46] and the signcryption was shown as an efficient way of achieving the message confidentiality and authenticity together as compared to the โ€œSign then Encryptโ€ approach. However, the author did not provide any formal security proof of the proposed signcryption as no security model was available. Later, Baek et al. [3] formalized a security model and gave a formal security proof of the signcryption scheme [46] in this model. An et al. [1] proposed three generic paradigms of signcryption, โ€œEncrypt then Sign (โ„ฐโขtโข๐’ฎ)โ€, โ€œSign then Encrypt (๐’ฎโขtโขโ„ฐ)โ€ and โ€œCommit then Encrypt and Sign (๐’žโขtโขโ„ฐ&๐’ฎ)โ€. Among these three paradigms, ๐’žโขtโขโ„ฐ&๐’ฎ runs faster than the other paradigms as the Encrypt (resp. Decrypt) and Sign (resp. Ver) modules execute in parallel in the Signcrypt (resp. Unsigncrypt) algorithm. The security of the paradigms โ„ฐโขtโข๐’ฎ, ๐’ฎโขtโขโ„ฐ and ๐’žโขtโขโ„ฐ&๐’ฎ was proven in two-user insider models and two-user outsider models. However, by incorporating the identities of receiver and sender appropriately in signcrypt and unsigncrypt algorithms, the security can be proven in multi-user models as well. The โ„ฐโขtโข๐’ฎ paradigm preserves sUF-CMA and IND-gCCA security of the primitive signature scheme and encryption scheme, respectively, in insider models. The ๐’ฎโขtโขโ„ฐ paradigm preserves UF-CMA and IND-CCA security of the primitive signature scheme and encryption scheme, respectively, in insider models. On the other hand, ๐’žโขtโขโ„ฐ&๐’ฎ paradigm can preserve only weak security in insider models, viz., the UF-CMA security and IND-gCCA security of the primitive signature scheme and encryption scheme, respectively. Subsequently, many signcryption schemes [30, 29, 25, 26, 12, 10, 4, 8] have been proposed either in PKI-setting or in โ„โข๐’Ÿ-based setting to improve different constraints, e.g., efficiency, hardness assumptions, security model, standard/random oracle model, tightness of security reduction.

For the last decade, attribute-based encryption (ABE) and attribute-based signature (ABS) became the popular encryption and signature primitives, respectively, because of their versatility. In ABE (resp. ABS) a message is encrypted (resp. signed) under a policy and the key is labeled with a set of attributes. This form of ABE (resp. ABS) is known to be ciphertext-policy attribute-based encryption (CP-ABE) [6, 22, 33, 44, 23] (resp. signature-policy attribute-based signature (SP-ABS) [34, 27, 24, 28]). Its dual form, where the role of policy and set of attributes are interchanged, is called key-policy attribute-based encryption (KP-ABE) [17, 35, 22, 33, 2] (resp. key-policy attribute-based signature (KP-ABS) [41]).

Attribute-based signcryption (ABSC) is a natural extension of signcryption in the โ„โข๐’Ÿ-based setting. It captures the security of both primitives, ABE and ABS, i.e., ABSC provides three important securities, message confidentiality, unforgeability and signer privacy. It was Gagnรฉ et al. [15] who first proposed an ABSC scheme for threshold policies. By applying the generic paradigms of [1], one can obtain ABSC from ABE and ABS. The main problem in these paradigms is that they neither achieve both strong unforgeability and IND-CCA security nor efficiency even if their underlying schemes, ABS and ABE, have the stronger security and efficiency. To address the aforementioned issues and others constraints, many ABSC schemes have been studied, see, e.g., [9, 14, 36, 38].

1.1 Our result

PKI-setting. We revisit the different signcryption paradigms of An et al. [1] who claimed[1] that IND-gCCA security of the primitive encryption scheme is preserved in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm if the underlying commitment scheme has hiding and relaxed-concealment properties (for definition, refer to Section 2.3). However, the security claim is correct, but the proof of the claim is ambiguous (see Section 3). In the proof of the claim, An et al. defined two environments, Env1 and Env2, which were shown to be indistinguishable under the hiding property without giving proper justification of the challenge ciphertext computation. The main issue is that the simulator is totally unaware of the decommitment part of the challenge message. We show (in Section 3.1) that Env1 and Env2 are not indistinguishable under the hiding property of the commitment scheme. Thus, revising the proof becomes necessary for validating the claim. Indeed, we provide a revised proof for IND-gCCA security in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm (in Section 3.2).

None of the aforementioned paradigms, ๐’žโขtโขโ„ฐ&๐’ฎ, โ„ฐโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐ, achieves both stronger securities[2] in insider models even if the primitives are assumed to have stronger security. By applying OTS at the outside layer, we extend these paradigms to new paradigms (see Section 4), โ€œCommit then Encrypt and Sign then Signโ€ (๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ), โ€œEncrypt then Sign then Signโ€ (โ„ฐโขtโข๐’ฎโขtโข๐’ฎ) and โ€œSign then Encrypt then Signโ€ (๐’ฎโขtโขโ„ฐโขtโข๐’ฎ), to guarantee both stronger securities. We also obtain a new paradigm, โ€œEncrypt and Sign then Sign (โ„ฐ&๐’ฎโขtโข๐’ฎ)โ€, which is surprisingly better than the ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ paradigm in all aspects except that โ„ฐ&๐’ฎโขtโข๐’ฎ does not guarantee the non-repudiation.

Attribute-based setting. In a similar way, one can obtain the above new paradigms, ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ, โ„ฐ&๐’ฎโขtโข๐’ฎ, โ„ฐโขtโข๐’ฎโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ, in the attribute-based setting as well, where IND-gCCA (resp. UF-CMA) security is stretched to IND-CCA (resp. sUF-CMA) security. The only candidates of IND-gCCA secure ABE available in the literature are IND-CCA secure ABE. So, it is a natural question to ask whether the IND-CCA security of ABSC can be entertained even from a low level secure ABE, i.e., IND-CPA secure ABE. Affirmatively, we provide generic ABSC constructions (in Section 5) based on delegation and verifiability [45, 31]. In these constructions, the IND-CCA security and sUF-CMA security of ABSC are achieved from IND-CPA secure ABE and UF-NMA secure ABS, respectively. Recently, Pandit et al. [36] proposed a concrete ABSC scheme using the CP-ABE [22], an SP-ABS modified from [9] and commitment scheme. The authors basically extended the ๐’žโขtโขโ„ฐ&๐’ฎ approach to the new approach ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ in the attribute-based setting to acquire the stronger security in adaptive-predicates models. Their work motivates us to study constructions of ABSC generically. Interestingly, our generic constructions are applicable to the combined setup [36], where the public parameters and keys for the primitives, ABS and ABE, are identical. We also consider generic constructions of signcryption to support the independent setup[3], where the public parameters and keys for the primitives, ABS and ABE, are independent. In this paper, we provide generic constructions for several variants of ABSC and all the securities are proven in the standard model. The proposed ABSC provides signer privacy if the underlying ABS does so. Unforgeability of the proposed constructions is proven in the adaptive-predicates model (Definition 2.22). The confidentiality models considered here are the adaptive-predicates model (Definition 2.16) and the selective-predicate model (Definition 2.17) according to the adaptive-predicate security and selective-predicate security of the underlying ABE.

1.2 Related work

Signcryption in PKI-setting. As discussed earlier, the security of the paradigms โ„ฐโขtโข๐’ฎ, ๐’ฎโขtโขโ„ฐ and ๐’žโขtโขโ„ฐ&๐’ฎ of [1] was proven in the insider model (where the attacker is supplied the secret key of either the receiver or the sender, and signcrypt and unsigncrypt oracles) and the outsider model (only the signcrypt and unsigncrypt oracles are provided to the attacker). The insider security models used in [1, 3] are weak in the sense that ๐’œ can freely choose all the keys, except both the challenge receiverโ€™s key and senderโ€™s key. This insider security model was referred in [30] as โ€œfixed challenge multi-user insider modelโ€ and a short notation โ€œfM-IND-iCCAโ€ (resp. โ€œfM-sUF-CMAโ€) was used for insider confidentiality (resp. unforgeability).

Stronger insider models were developed by Libert and Quisquater [25], where ๐’œ is free to choose all user keys, except the challenge receiverโ€™s key (resp. senderโ€™s key) in case of confidentiality (resp. unforgeability). In [30], these models are called โ€œdynamic multi-user insider modelsโ€. The model for confidentiality (resp. unforgeability) is also known as โ€œdM-IND-iCCAโ€ (resp. โ€œdM-sUF-CMAโ€). A number of security models and their comparisons were given in details in [30].

Tan [42] proposed a signcryption scheme based on the โ„ฐโขtโข๐’ฎ structure and the security was proven in dynamic multi-user insider models [25, 30] without assuming random oracle. Although the security was shown to be in stronger insider models, the unforgeability is attained if the key registration (refer to [30] for details) is used.

Matsuda et al. [30] presented a number of generic conversions of signcryption using existing primitives and their simple extensions. For example, the authors optimize the well-known approaches ๐’ฎโขtโขโ„ฐ and โ„ฐโขtโข๐’ฎ to โ€œSign then Tag-based Encryption (๐’ฎโขtโข๐’ฏโขโ„ฐ)โ€ and โ€œTag-based Encryption then Sign (๐’ฏโขโ„ฐโขtโข๐’ฎ)โ€, respectively, using tag-based encryption [20]. The former approach achieves dM-UF-iCMA (weak unforgeability) and dM-IND-iCCA security, while the latter attains both stronger securities in dynamic multi-user insider models. For proving dM-sUF-iCMA security for the latter approach, one-to-one property of the primitive signature scheme was assumed. In their other conversion, a generic signcryption was constructed from the tag-based key encapsulation mechanism (TBKEM), data encapsulation mechanism (DEM) and signature scheme. This conversion achieves dM-sUF-iCMA and dM-IND-iCCA security in dynamic multi-user insider models [25, 30], but unforgeability was shown under the assumption of key registration.

Chiba et al. [11] also proposed two generic conversions of signcryption. The first conversion uses the IND-tag-CCA secure TBKEM, IND-CCA secure DEM and strongly unforgeable OTS. The second conversion uses the IND-CCA secure KEM, IND-CCA secure DEM, strongly unforgeable one-time MAC and strongly unforgeable OTS. Both conversions were shown to be secure in the dynamic multi-user insider models [25, 30] neither assuming random oracle nor the key registration.

Attribute-based signcryption.

Attribute-based signcryption is an advanced cryptographic primitive which captures the functionalities of both primitives, ABS and ABE. The first ABSC scheme was proposed by Gagnรฉ et al. [15] using the Fuzzy IBE structure [40], but the access control their scheme provides has limited expressibility. Later, Emura et al. [14] proposed an attribute-based signcryption, where senderโ€™s access policy and receiverโ€™s policy are represented by monotone access tree and AND-gate with wildcard, respectively. Both schemes were shown to be secure in the selective-predicate models. However, the signer-privacy was not considered in the former scheme, whereas the latter ABSC scheme lacks this property.

Wang and Huang [43] presented an ABSC scheme, where the receiverโ€™s policies and senderโ€™s policies, that their ABSC scheme supports, are monotone access trees. Confidentiality and unforgeability of their scheme were proven in the adaptive-predicates models. However, confidentiality of the scheme was proven in the generic group model without giving unsigncrypt oracle access to the adversary. The unforgeability of the scheme was proven in the random oracle model.

Chen et al. [9] proposed a combined public-key scheme in attribute-based setting. In this combined scheme, the distributions of public parameters and keys in the underlying ABS and ABE schemes are considered to be identical. Their combined scheme is based on the construction of Waters [44]. The scheme was shown to be selectively secure in the joint security model. Finally, Chen et al. showed a generic extension from this combined scheme to attribute-based signcryption in the ๐’ฎโขtโขโ„ฐ paradigm. Both policies considered in their scheme are monotone span programs. This signcryption scheme possesses the signer-privacy, and the confidentiality and unforgeability of the signcryption scheme were proven in the selective-predicate models.

Recently, Rao et al. [38] presented an ABSC scheme with constant size signcryption and the number of pairings required in unsigncrypt is 6. The receiverโ€™s policies and senderโ€™s policies used in their scheme are monotone span programs. Confidentiality and unforgeability of the scheme were shown in the selective-predicate models. Their ABSC scheme possesses the signer privacy.

2 Preliminaries

Notation. For a set X, xโ†RX denotes that x is randomly picked from X according to the distribution R. Likewise, xโ†UX indicates that x is uniformly selected from X. For an algorithm A and variables x,y, the notation xโ†Aโข(y) (resp. Aโข(y)โ†’x) carries the meaning that when A is run on the input y, it outputs x. The symbol PPT stands for probabilistic polynomial-time. For a,bโˆˆโ„•, define [a,b]:={iโˆˆโ„•:aโ‰คiโ‰คb} and [b]:=[1,b]. Let str1โขโˆฅโ€ฆโˆฅโขstrn denote the concatenation of the strings, str1,โ€ฆ,strnโˆˆ{0,1}โˆ—. For algorithms A1,โ€ฆ,An and variables x1,โ€ฆ,xn, y1,โ€ฆ,yn, the notation x1โ†A1(y1);โˆฅโ€ฆ;โˆฅxnโ†An(yn); stands for the parallel execution of x1โ†A1โข(y1),โ€ฆ,xnโ†Anโข(yn). For a vector Yโ†’k (resp. Yโ†’), the i-th component is denoted by Ykโขi (resp. Yi). For Xโ†’:=(X1,โ€ฆ,Xn) and Yโ†’:=(Y1,โ€ฆ,Yn), the dot product of Xโ†’ and Yโ†’ is defined by Xโ†’โ‹…Yโ†’:=โˆ‘i=1nXiโขYi.

2.1 Access structure and LSSS

Definition 2.1

Definition 2.1 (Access structure)

Let ๐’ซ={P1,P2,โ€ฆ,Pn} be a set of parties. A collection ฮ“โŠ‚2๐’ซ is said to be monotone if ฮ“ is closed under superset, i.e., for all B, C, if Bโˆˆฮ“ and BโŠ‚C, then Cโˆˆฮ“. An access structure (resp. monotone access structure) is a collection (resp. monotone collection) ฮ“ of non-empty subsets of ๐’ซ, i.e., ฮ“โŠ‚2๐’ซโˆ–{โˆ…}. The members of ฮ“ are called authorized sets, and the sets not in ฮ“ are called unauthorized sets.

A monotone access structure ฮ“ can be represented by the set of minimal sets as defined below.

Definition 2.2

Definition 2.2 (Minimal set of a monotone access structure)

Let ฮ“ be a monotone access structure over the set of attributes ๐’ซ. Then Bโˆˆฮ“ is a minimal set if for all Aโˆˆฮ“โˆ–{B}, we have AโŠ„B. The set of all minimal sets in ฮ“ is called the basis of ฮ“.

An access structure is also represented by the access tree and a linear secret sharing scheme (LSSS). For access tree representation, we refer to [17, 6]. In the following, we define the linear secret sharing scheme of [44, 5] as later we give the construction of attribute-based signcryption using LSSS representation.

Definition 2.3

Definition 2.3 (Linear secret sharing scheme (LSSS))

A secret sharing scheme ฮ  over a set of parties ๐’ซ={P1,P2,โ€ฆ,Pn} is called linear (over โ„คp) if the following holds:

  1. The shares for each party form a vector over โ„คp.

  2. There exists a matrix M, called the share generating matrix for ฮ . The matrix M has โ„“ rows and n columns. For all i=1,2,โ€ฆ,โ„“, the i-th row of M is labeled by a party ฯโข(i) (ฯ is the function from {1,2,โ€ฆ,โ„“} to ๐’ซ). When we consider the column vector vโ†’=(s,r2,โ€ฆ,rn), where sโˆˆโ„คp is the secret to be shared and r2,โ€ฆ,rnโ†Uโ„คp, then Mโขvโ†’ is the vector of โ„“ shares of the secret s according to ฮ . The share (Mโขvโ†’)i belongs to party ฯโข(i).

Property of LSSS. Every LSSS according to the above definition enjoys the linear reconstruction property defined as follows. Suppose that ฮ  is an LSSS for an access structure ฮ“. Let Aโˆˆฮ“ be an authorized set. Let โ„:={iโˆˆ[โ„“]|ฯโข(i)โˆˆA}. Then there exist constants {ฮฑiโˆˆโ„คp}iโˆˆโ„ such that โˆ‘iโˆˆโ„ฮฑiโขMโ†’i=(1,0,โ€ฆ,0), where Mโ†’i is the i-th row of M. The vector 1โ†’:=(1,0,โ€ฆ,0) is called the target vector. Hence, if {si} are valid shares of any secret s according to ฮ , then โˆ‘iโˆˆโ„ฮฑiโขsi=s. These constants {ฮฑi} can be found in time polynomial in the size of the share-generating matrix M.

Span program. Given any monotone access structure, one can obtain the corresponding LSSS representation (denoted by (M,ฯ)) by applying the technique of [5]. If the access structure has โ„“ nodes, then the LSSS matrix has โ„“ rows. For a monotone access structure ฮ“, the corresponding LSSS representation (M,ฯ) is called monotone span program (MSP).

2.2 Commitment scheme

A non-interactive commitment scheme consists of three PPT algorithms: Setup, Commit and Open.

  1. Setup takes a security parameter ฮบ and outputs a public commitment key ๐’žโข๐’ฆ.

  2. Commit takes as input a message m, the public commitment key ๐’žโข๐’ฆ and returns a pair (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†), where com is a commitment of the message m and decom is the decommitment.

  3. Open takes a pair (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†), the public commitment key ๐’žโข๐’ฆ as input and outputs m or โŠฅ.

For correctness, it is required that[4]๐–ฎ๐—‰๐–พ๐—‡โข(๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(m))=m for all messages mโˆˆโ„ณ, where โ„ณ is the message space.

2.3 Security of commitment

As usual there are two security properties of a commitment scheme: Hiding and Binding. But, here we consider an additional property, called concealment property, and its weaker variant, relaxed-concealment property. Both the concealment and the relaxed-concealment property are found in [13] in the form of concealment scheme. Eventually, the commitment and concealment scheme have the hiding property as a common security attribute, but they are different due to a lack of either the concealment property or the binding property. In the concealment scheme [13], Dodis and An used the binding property and relaxed-binding property (which are different in the context of commitment scheme) which we call respectively the concealment property and relaxed-concealment property in this paper.

A commitment scheme is said to have hiding, binding, relaxed-binding, concealment and relaxed-concealment properties, respectively, if it satisfies the following:

Hiding. For all PPT ๐’œ the following is negligible:

|Prโก[๐’žโข๐’ฆโ†C.Setupโข(1ฮบ);(m0,m1,sโขt)โ†๐’œโข(๐’žโข๐’ฆ);bโ†U{0,1};(๐–ผ๐—ˆ๐—†b,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†b)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(๐’žโข๐’ฆ,mb):๐’œโข(๐’žโข๐’ฆ,sโขt,๐–ผ๐—ˆ๐—†b)=b]-12|.

Binding. For all PPT ๐’œ the following is negligible:

Prโก[๐’žโข๐’ฆโ†C.Setupโข(1ฮบ);(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โ€ฒ)โ†๐’œโข(๐’žโข๐’ฆ);mโ†๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†);mโ€ฒโ†๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โ€ฒ):(mโ‰ mโ€ฒ)โˆง(m,mโ€ฒโ‰ โŠฅ)].

Relaxed-binding. For all PPT ๐’œ the following is negligible:

Prโก[๐’žโข๐’ฆโ†C.Setupโข(1ฮบ);(m,sโขt)โ†๐’œโข(๐’žโข๐’ฆ);(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(m);๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โ€ฒโ†๐’œโข(๐’žโข๐’ฆ,sโขt,๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†);mโ€ฒโ†๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โ€ฒ):(mโ‰ mโ€ฒ)โˆง(mโ€ฒโ‰ โŠฅ)].
Remark 2.4

It is immediate that the relaxed-binding property is weaker than the binding property.

Concealment. For all PPT ๐’œ the following is negligible:

Prโก[๐’žโข๐’ฆโ†C.Setupโข(1ฮบ);(๐–ผ๐—ˆ๐—†,๐–ผ๐—ˆ๐—†โ€ฒ,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐’œโข(๐’žโข๐’ฆ);mโ†๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†);mโ€ฒโ†๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†โ€ฒ,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†):(๐–ผ๐—ˆ๐—†โ‰ ๐–ผ๐—ˆ๐—†โ€ฒ)โˆง(m,mโ€ฒโ‰ โŠฅ)].

Relaxed-concealment. For all PPT ๐’œ the following is negligible:

Prโก[๐’žโข๐’ฆโ†C.Setupโข(1ฮบ);(m,sโขt)โ†๐’œโข(๐’žโข๐’ฆ);(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(m);๐–ผ๐—ˆ๐—†โ€ฒโ†๐’œโข(๐’žโข๐’ฆ,sโขt,๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†);mโ€ฒโ†๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†โ€ฒ,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†):(๐–ผ๐—ˆ๐—†โ‰ ๐–ผ๐—ˆ๐—†โ€ฒ)โˆง(mโ€ฒโ‰ โŠฅ)].
Remark 2.5

It is easy to check that the relaxed-concealment property is weaker than the concealment property.

2.4 Public key encryption scheme

A public key encryption (PKE) scheme consists of three PPT algorithms: Gen-Enc, Encrypt and Decrypt.

  1. Gen-Enc. Input: a security parameter ฮบ. Output: a public key and private key pair (๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ).

  2. Encrypt. Input: a message m and public key ๐’ซโข๐’ฆ. Output: a ciphertext C.

  3. Decrypt. Input: a public key ๐’ซโข๐’ฆ, private key ๐’ฎโข๐’ฆ and a ciphertext C. Output: a message m or โŠฅ.

For correctness, it is required that m=๐–ฃ๐–พ๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ,๐–ค๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(m,๐’ซโข๐’ฆ)) for all (๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ)โ†Gen-Encโข(1ฮบ) and all messages mโˆˆโ„ณ.

2.5 Security of public key encryption scheme

Definition 2.6

A public key encryption scheme is said to be IND-CCA secure if for all PPT adversaries ๐’œ:=(๐’œ1,๐’œ2), the advantage ๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คIND-CCAโข(ฮบ) is at most a negligible function in security parameter ฮบ, where ๐’œ is provided the access to decrypt oracle ๐’ชD and NRn is the natural restriction that ๐–ขโˆ— was never queried to ๐’ชD.

๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คIND-CCAโข(ฮบ):=|Prโก[(๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ)โ†Gen-Encโข(1ฮบ);(m0,m1,sโขt)โ†๐’œ1๐’ชDโข(1ฮบ,๐’ซโข๐’ฆ);bโ†U{0,1};๐–ขโˆ—โ†๐–ค๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(mb,๐’ซโข๐’ฆ);bโ€ฒโ†๐’œ2๐’ชDโข(1ฮบ,๐’ซโข๐’ฆ,๐–ขโˆ—,sโขt):b=bโ€ฒโˆง๐–ญ๐–ฑ๐—‡]-12|.

A weaker version is called IND-CPA security, where ๐’œ is forbidden to ask the decrypt oracle.

IND-gCCA security. Now we will consider a security definition, called IND-gCCA security [1] which comes in between IND-CCA and IND-CPA. It is defined similarly to IND-CCA, except for the natural restriction NRn. In IND-gCCA security, NRn is defined in a more generalized way. Indeed, let โ„› be an equivalence relation over the ciphertexts. We call this relation decryption-respecting if โ„›โข(๐–ข1,๐–ข2)=๐–ณ๐—‹๐—Ž๐–พ implies ๐–ฃ๐–พ๐–ผ๐—‹๐—’๐—‰๐—โข(๐–ข1)=๐–ฃ๐–พ๐–ผ๐—‹๐—’๐—‰๐—โข(๐–ข2). The decrypt oracle query for C is restricted by โ„›โข(๐–ขโˆ—,๐–ข)=๐–ฅ๐–บ๐—…๐—Œ๐–พ instead of equality. A public key encryption is said to be IND-gCCA secure if there is a decryption-respecting relation โ„› such that it is secure in the above sense. The decryption-respecting relation โ„› can be defined over both the ciphertexts and public keys but not the secret keys. The IND-gCCA security can be extended in the area of other cryptographic primitives, e.g., IBE, ABE, ABSC. Similarly, one can define the notion of OW-gCCA and NM-gCCA security.

2.6 Public key signature scheme

A public key signature (PKS) scheme consists of three PPT algorithms: Gen-Sign, Sign and Ver.

  1. Gen-Sign takes a security parameter ฮบ. It outputs a verification key and signing key pair (๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ).

  2. Sign takes a message m and a signing key ๐’ฎโข๐’ฆ as input. It returns a signature ฮด.

  3. Ver receives a message m, a signature ฮด and a verification key ๐’ซโข๐’ฆ as input. It returns a boolean value 1 for acceptance or 0 for rejection.

For correctness, it is required that 1=๐–ต๐–พ๐—‹โข(m,๐–ฒ๐—‚๐—€๐—‡โข(m,๐’ฎโข๐’ฆ),๐’ซโข๐’ฆ) for all (๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ)โ†Gen-Signโข(1ฮบ) and all messages mโˆˆโ„ณ.

2.7 Unforgeability of public key signature

Definition 2.7

A PKS scheme is said to be strongly unforgeable (sUF-CMA) if for all PPT adversaries ๐’œ, the advantage ๐– ๐–ฝ๐—๐’œ,PKSsUF-CMAโข(ฮบ) is at most a negligible function in ฮบ, where ๐’œ is provided the access to sign oracle ๐’ชSg and NRn is the natural restriction that if ฮดโ†๐’ชSgโข(m,๐’ซโข๐’ฆ), then (m,ฮด)โ‰ (mโˆ—,ฮดโˆ—).

๐– ๐–ฝ๐—๐’œ,PKSsUF-CMAโข(ฮบ):=Prโก[(๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ)โ†Gen-Signโข(1ฮบ);(mโˆ—,ฮดโˆ—)โ†๐’œ๐’ชSgโข(1ฮบ,๐’ซโข๐’ฆ):๐–ต๐–พ๐—‹โข(mโˆ—,ฮดโˆ—,๐’ซโข๐’ฆ)=1โˆง๐–ญ๐–ฑ๐—‡].

A weaker version of strong unforgeability is called simply unforgeability or weak unforgeability (UF-CMA), where the condition (m,ฮด)โ‰ (mโˆ—,ฮดโˆ—) is replaced by mโ‰ mโˆ—.

One-time signature. A signature scheme is said to be one-time signature scheme (OTS) if ๐’œ is allowed to access the oracle ๐’ชSg at most once. Throughout, we use the notations (๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„), (OTS.Gen,OTS.Sign,OTS.Ver) and ๐– ๐–ฝ๐—๐’œ,๐–ฎ๐–ณ๐–ฒsUF-CMAโข(ฮบ) for (๐’ซโข๐’ฆ,๐’ฎโข๐’ฆ), (Gen-Sign,๐–ฒ๐—‚๐—€๐—‡,๐–ต๐–พ๐—‹) and ๐– ๐–ฝ๐—๐’œ,PKSsUF-CMAโข(ฮบ), respectively, to represent the objects related to strongly unforgeable OTS.

Instantiation of strongly unforgeable OTS. There are many OTS schemes [21, 39, 37] available in the literature, but most of them are not strongly unforgeable. The OTS schemes which follow the one-way function paradigm of [16] can be transformed to strongly unforgeable OTS schemes by the transformation of [16]. The transformation of [16] is based on the universal one-way hash function (UOWHF) of [32]. The public key vk of the strongly unforgeable OTS in [16] includes the description of 2โขโ„“ randomly chosen UOWHFs (where โ„“ is the size of the message), so the size of the public key vk becomes larger. To solve this issue, Huang et al. [19] proposed a generic construction, where the one-way function of the primitive weakly unforgeable OTS is replaced by a randomly one (collision-resistance) hash function. They showed an efficient instantiation of strongly unforgeable OTS, referred to as strong HORS, using the efficient weakly unforgeable OTS [39]. For details, we refer to [19, Section 5].

2.8 Public key signcryption scheme

A signcryption scheme in the PKI setting consists of five PPT algorithms: Setup, ๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡R, ๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡S, Signcrypt and Unsigncrypt.

  1. Setup. Input: a security parameter ฮบ. Output: public parameters ๐’ซโข๐’ซ.

  2. ๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡S. Input: public parameters ๐’ซโข๐’ซ. Output: a public key and private key pair (๐’ซโข๐’ฆS,๐’ฎโข๐’ฆS) for the sender.

  3. ๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡R. Input: public parameters ๐’ซโข๐’ซ. Output: a public key and private key pair (๐’ซโข๐’ฆR,๐’ฎโข๐’ฆR) for the receiver.

  4. Signcrypt. Input: public parameters ๐’ซโข๐’ซ, a message m, the senderโ€™s private key ๐’ฎโข๐’ฆS and the receiverโ€™s public key ๐’ซโข๐’ฆR. Output: a signcryption.

  5. Unsigncrypt. Input: public parameters ๐’ซโข๐’ซ, a signcryption U, the receiverโ€™s private key ๐’ฎโข๐’ฆR and the senderโ€™s public key ๐’ซโข๐’ฆS. Output: a message m or โŠฅ (indicates invalid).

For correctness, it is required that ๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆS,๐’ซโข๐’ฆR),๐’ฎโข๐’ฆR,๐’ซโข๐’ฆS)=m for all ๐’ซโข๐’ซโ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ), all (๐’ซโข๐’ฆS,๐’ฎโข๐’ฆS)โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡Sโข(๐’ซโข๐’ซ), all (๐’ซโข๐’ฆR,๐’ฎโข๐’ฆR)โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡Rโข(๐’ซโข๐’ซ) and all mโˆˆโ„ณ.

2.9 Security of signcryption

The dynamic multi-user insider models [30, 25] for confidentiality and unforgeability are defined below.

Definition 2.8

A signcryption scheme is said to be adaptively secure (dM-IND-iCCA) if for all PPT adversaries ๐’œ:=(๐’œ1,๐’œ2), the advantage ๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขIND-CCAโข(ฮบ) is at most a negligible function in security parameter ฮบ, where ๐’œ is provided the access to unsigncrypt oracle ๐’ชU and signcrypt oracle ๐’ชS and NRn is the natural restriction that (๐–ดโˆ—,๐’ซโข๐’ฆSโˆ—) was never queried to ๐’ชU and (๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—) is a valid pair.

๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขIND-CCAโข(ฮบ):=|Prโก[๐’ซโข๐’ซโ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ);(๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—)โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡Rโข(๐’ซโข๐’ซ);(m0,m1,๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—,sโขt)โ†๐’œ1{๐’ชS,๐’ชU}โข(๐’ซโข๐’ซ,๐’ซโข๐’ฆRโˆ—);bโ†U{0,1};๐–ดโˆ—โ†๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,mb,๐’ฎโข๐’ฆSโˆ—,๐’ซโข๐’ฆRโˆ—);bโ€ฒโ†๐’œ2{๐’ชS,๐’ชU}โข(๐’ซโข๐’ซ,๐’ซโข๐’ฆRโˆ—,๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—,๐–ดโˆ—,sโขt):b=bโ€ฒโˆง๐–ญ๐–ฑ๐—‡]-12|.
Definition 2.9

A signcryption scheme is said to be strong unforgeable (dM-sUF-iCMA) if for all PPT adversaries ๐’œ, the advantage ๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขsUF-CMAโข(ฮบ) is at most a negligible function in ฮบ, where ๐’œ is provided the access to unsigncrypt oracle ๐’ชU and signcrypt oracle ๐’ชS and NRn is the natural restriction that if U is the replied signcryption for (m,๐’ซโข๐’ฆR), then (๐–ด,m,๐’ซโข๐’ฆR)โ‰ (๐–ดโˆ—,mโˆ—,๐’ซโข๐’ฆRโˆ—) and (๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—) is a valid pair.

๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขsUF-CMAโข(ฮบ):=Prโก[๐’ซโข๐’ซโ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ);(๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—)โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡Sโข(๐’ซโข๐’ซ);(๐–ดโˆ—,๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—)โ†๐’œ{๐’ชS,๐’ชU}โข(๐’ซโข๐’ซ,๐’ซโข๐’ฆSโˆ—,๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—);mโˆ—โ†๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ดโˆ—,๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆSโˆ—):mโˆ—โ‰ โŠฅโˆง๐–ญ๐–ฑ๐—‡].

A weaker version of strong unforgeability is called simply unforgeability or weak unforgeability (dM-UF-iCMA), where the condition (๐–ด,m,๐’ซโข๐’ฆR)โ‰ (๐–ดโˆ—,mโˆ—,๐’ซโข๐’ฆRโˆ—) is replaced by (m,๐’ซโข๐’ฆR)โ‰ (mโˆ—,๐’ซโข๐’ฆRโˆ—).

2.10 Attribute-based encryption

Let ๐’ฐ be a universe of attributes. Let ฮ“ be an access structure over ๐’ฐ and A be a subset of ๐’ฐ. We say ฮ“ is satisfied by A if Aโˆˆฮ“. Let ฮฃฮ“:={ฮ“|ฮ“โŠ‚2๐’ซโˆ–{โˆ…}} and ฮฃA:={A|AโŠ‚๐’ฐ}. We define a binary relation โˆผ over ฮฃAร—ฮฃฮ“ (resp. ฮฃฮ“ร—ฮฃA) as follows: Aโˆผฮ“ (resp. ฮ“โˆผA) if and only if Aโˆˆฮ“.

Terminology. From now onwards, we use the notations ๐’ณ and ๐’ด to denote the set of key indices and the set of associated data indices, respectively. For the attribute-based setting, we assume (๐’ณ,๐’ด) carries the meaning of either (ฮฃA,ฮฃฮ“) or (ฮฃฮ“,ฮฃA). Let ๐’‹:=๐’ฐ be called the system parameter. So, it is clear that ๐’ณ and ๐’ด are defined over ๐’‹.

An attribute-based encryption (ABE) scheme consists of four PPT algorithms: Setup, KeyGen, Encrypt and Decrypt.

  1. Setup takes a security parameter ฮบ and a system parameter ๐’‹ as input and outputs public parameters ๐’ซโข๐’ซ and master secret โ„ณโข๐’ฎโข๐’ฆ.

  2. KeyGen takes as input public parameters ๐’ซโข๐’ซ, master secret โ„ณโข๐’ฎโข๐’ฆ and a key index xโˆˆ๐’ณ and outputs a secret key ๐’ฎโข๐’ฆx corresponding to x.

  3. Encrypt takes public parameters ๐’ซโข๐’ซ, a message m and an associated data index yโˆˆ๐’ด as input and returns a ciphertext C which implicitly contains y.

  4. Decrypt takes as input public parameters ๐’ซโข๐’ซ, a ciphertext C and a secret key ๐’ฎโข๐’ฆx. It returns a value from โ„ณโˆช{โŠฅ}.

For correctness, it is required that xโˆผy implies ๐–ฃ๐–พ๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ค๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,y),๐’ฎโข๐’ฆx)=m for all (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹), all xโˆˆ๐’ณ, all ๐’ฎโข๐’ฆxโ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x), all yโˆˆ๐’ด and all mโˆˆโ„ณ.

An attribute-based encryption is called ciphertext-policy attribute-based encryption (CP-ABE) if (๐’ณ,๐’ด)=(ฮฃA,ฮฃฮ“); otherwise it is called the key-policy attribute-based encryption (KP-ABE).

2.11 Security of ABE scheme

Definition 2.10

Definition 2.10 (Adaptive-predicate IND-CCA security)

An ABE scheme is said to be adaptively secure (AP-IND-CCA) if for all PPT adversaries ๐’œ:=(๐’œ1,๐’œ2), the advantage ๐– ๐–ฝ๐—๐’œ,ABEIND-CCAโข(ฮบ) is at most a negligible function in security parameter ฮบ, where ๐’œ is provided the access to keyGen oracle ๐’ชK and decrypt oracle ๐’ชD and NRn is the natural restriction that (๐–ขโˆ—,x) with xโˆผyโˆ— was never queried to ๐’ชD, and xโ‰yโˆ— for each key index x queried to ๐’ชK.

๐– ๐–ฝ๐—๐’œ,ABEIND-CCAโข(ฮบ):=|Prโก[(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹);(m0,m1,yโˆ—,sโขt)โ†๐’œ1{๐’ชK,๐’ชD}โข(๐’ซโข๐’ซ);bโ†U{0,1};๐–ขโˆ—โ†๐–ค๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,mb,yโˆ—);bโ€ฒโ†๐’œ2{๐’ชK,๐’ชD}โข(๐’ซโข๐’ซ,๐–ขโˆ—,sโขt):b=bโ€ฒโˆง๐–ญ๐–ฑ๐—‡]-12|.

Likewise in selective-predicate IND-CCA (SP-IND-CCA) security, the adversary ๐’œ submits the challenge index yโˆ— before receiving ๐’ซโข๐’ซ of ABE.

A weaker notion of security can be defined similarly as above, except ๐’œ is not allowed to access the ๐’ชD oracle. It is called IND-CPA security in both adaptive-predicate (AP-IND-CPA) and selective predicate (SP-IND-CPA) models.

2.12 Attribute-based signature

An attribute-based signature (ABS) scheme consists of four PPT algorithms: Setup, KeyGen, Sign and Ver.

  1. Setup takes a security parameter ฮบ and a system parameter ๐’‹ as input and outputs public parameters ๐’ซโข๐’ซ and master secret โ„ณโข๐’ฎโข๐’ฆ.

  2. KeyGen takes as input public parameters ๐’ซโข๐’ซ, master secret โ„ณโข๐’ฎโข๐’ฆ and a key index xโˆˆ๐’ณ and outputs a secret key ๐’ฎโข๐’ฆx corresponding to x.

  3. Sign takes public parameters ๐’ซโข๐’ซ, a message m, a secret key ๐’ฎโข๐’ฆx and an associated data index yโˆˆ๐’ด with xโˆผy and returns a signature ฮด.

  4. Ver receives public parameters ๐’ซโข๐’ซ, a message m, a signature ฮด and a claim associated data index y as input. It returns a boolean value 1 for acceptance or 0 for rejection.

For correctness, it is required that ๐–ต๐–พ๐—‹โข(๐’ซโข๐’ซ,m,๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx,y),y)=1 for all (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹), all messages mโˆˆโ„ณ, all xโˆˆ๐’ณ, all ๐’ฎโข๐’ฆxโ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x) and all indices yโˆˆ๐’ด with xโˆผy.

2.13 Security of ABS scheme

Definition 2.11

Definition 2.11 (Signer privacy)

An ABS scheme is said to be perfectly private if for all (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰, all key indices x1,x2โˆˆ๐’ณ, all keys ๐’ฎโข๐’ฆx1โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x1), ๐’ฎโข๐’ฆx2โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x2), all messages mโˆˆโ„ณ, and all claim indices yโˆˆ๐’ด such that x1โˆผy and x2โˆผy, the distributions of ๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx1,y) and ๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx2,y) are identical.

Next, we define an alternative signature algorithm, ๐– ๐—…๐—๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,โ„ณโข๐’ฎโข๐’ฆ,y): it first produces a secret key ๐’ฎโข๐’ฆxโ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x) for a key index x such that xโˆผy and then runs ฮดโ†๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx,y). For an ABS scheme with signer-privacy, ๐– ๐—…๐—๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,โ„ณโข๐’ฎโข๐’ฆ,y) and ๐–ฒ๐—‚๐—€๐—‡โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx,y) are identical for all x with xโˆผy. Therefore, we may replace the Sign oracle by the AltSign oracle for an ABS with signer-privacy whenever it is required.

Definition 2.12

Definition 2.12 (Adaptive-predicate unforgeability)

An ABS scheme is said to be adaptive-predicate existential unforgeable (AP-UF-CMA) if for all PPT adversaries ๐’œ, the advantage ๐– ๐–ฝ๐—๐’œ,ABSUF-CMAโข(ฮบ) is at most a negligible function in ฮบ, where ๐’œ is provided the access to keyGen oracle ๐’ชK and sign oracle ๐’ชSg and NRn is the natural restriction that (mโˆ—,yโˆ—) was never queried to ๐’ชSg oracle, and xโ‰yโˆ— for each key index x queried to ๐’ชK.

๐– ๐–ฝ๐—๐’œ,ABSUF-CMAโข(ฮบ):=Prโก[(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹);(ฮดโˆ—,mโˆ—,yโˆ—)โ†๐’œ{๐’ชK,๐’ชSg}โข(๐’ซโข๐’ซ):๐–ต๐–พ๐—‹โข(๐’ซโข๐’ซ,mโˆ—,ฮดโˆ—,yโˆ—)=1โˆง๐–ญ๐–ฑ๐—‡].
Remark 2.13

The above unforgeability is also called weak unforgeability in the sense that ๐’œ is not allowed to forge for the queried messages. In strong unforgeability (we use notation AP-sUF-CMA), the adversary ๐’œ may forge ฮดโˆ— for a queried message pair (mโˆ—,yโˆ—) but the replied signature ฮด on (mโˆ—,yโˆ—) must be different from ฮดโˆ—.

Remark 2.14

There is another variant of unforgeability, called selective-predicate unforgeability in both weak and strong sense, where ๐’œ submits a challenge index yโˆˆ๐’ด (later on which it will forge) before obtaining the ๐’ซโข๐’ซ of ABS.

UF-NMA. So far, we have defined the unforgeability in chosen message attack, where ๐’œ is allowed to ask for any number (polynomial) of signature queries of his own choice. In contrast, ๐’œ is forbidden to ask any signature query in no message attack (NMA). Similarly to above, the unforgeability can be defined in the sense of selective-predicate (called SP-UF-NMA) and adaptive-predicate (AP-UF-NMA).

SP-ABS and KP-ABS. Similar to ABE, there are two forms of ABS, signature-policy attribute-based signature (SP-ABS) and key-policy attribute-based signature (KP-ABS). The ABS is called the SP-ABS if (๐’ณ,๐’ด)=(ฮฃA,ฮฃฮ“) and KP-ABS if (๐’ณ,๐’ด)=(ฮฃฮ“,ฮฃA).

2.14 Attribute-based signcryption

An attribute-based signcryption (ABSC) scheme consists of four PPT algorithms: Setup, KeyGen, Signcrypt and Unsigncrypt.

  1. Setup takes a security parameter ฮบ and a system parameter ๐’‹ as input, outputs the public parameters ๐’ซโข๐’ซ and the master secret โ„ณโข๐’ฎโข๐’ฆ. The index spaces ๐’ณ and ๐’ด are defined over the system parameter ๐’‹.

  2. KeyGen takes public parameters ๐’ซโข๐’ซ, master secret โ„ณโข๐’ฎโข๐’ฆ and a key index xโˆˆ๐’ณ as input and outputs a secret key ๐’ฎโข๐’ฆx corresponding to x.

  3. Signcrypt takes public parameters ๐’ซโข๐’ซ, a message mโˆˆโ„ณ, a signing key ๐’ฎโข๐’ฆx, an associated data index ysโˆˆ๐’ด for signer with xโˆผys and an associated data index yeโˆˆ๐’ด for receiver as input and returns a signcryption U for (ys,ye) (we assume that U implicitly contains ye).

  4. Unsigncrypt takes as input public parameters ๐’ซโข๐’ซ, a signcryption U, a secret key ๐’ฎโข๐’ฆx and an associated index ysโˆˆ๐’ด for signer. It returns a value from โ„ณโˆช{โŠฅ}.

For correctness, it is required that ๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ด,๐’ฎโข๐’ฆx~,ys)=m for all (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹), all mโˆˆโ„ณ, all key indices xโˆˆ๐’ณ, all ๐’ฎโข๐’ฆxโ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x), all signer associated indices ysโˆˆ๐’ด with xโˆผys, all receiverโ€™s associated indices yeโˆˆ๐’ด, all signcryptions ๐–ดโ†๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx,ys,ye), all key indices x~โˆˆ๐’ณ with x~โˆผye, and all ๐’ฎโข๐’ฆx~โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x~).

2.15 Security of ABSC

Definition 2.15

Definition 2.15 (Signer privacy)

An ABSC scheme is said to be perfectly private if for all (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰, all key indices x1,x2โˆˆ๐’ณ, all keys ๐’ฎโข๐’ฆx1โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x1), ๐’ฎโข๐’ฆx2โ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ,x2), all messages mโˆˆโ„ณ, all signer associated indices ysโˆˆ๐’ด such that x1โˆผys and x2โˆผys, and all receiverโ€™s associated indices yeโˆˆ๐’ด, the distributions of ๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx1,ys,ye) and ๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx2,ys,ye) are identical.

Similar to AltSign defined in Section 2.13, for the ABSC scheme having signer-privacy, one may replace the ๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,๐’ฎโข๐’ฆx,ys,ye) oracle by an alternative signcrypt oracle ๐– ๐—…๐—๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,m,โ„ณโข๐’ฎโข๐’ฆ,ys,ye) in the following two definitions.

Definition 2.16

Definition 2.16 (Adaptive-predicates IND-CCA security)

An ABSC scheme is said to be adaptively secure (APs-IND-CCA) if for all PPT adversaries ๐’œ:=(๐’œ1,๐’œ2), the advantage ๐– ๐–ฝ๐—๐’œ,ABSCIND-CCAโข(ฮบ) is at most a negligible function in security parameter ฮบ, where ๐’œ is provided the access to keyGen oracle ๐’ชK, signcrypt oracle ๐’ชS and unsigncrypt oracle ๐’ชU, and NRn is the natural restriction that (๐–ดโˆ—,x,ysโˆ—) with xโˆผyeโˆ— was never queried to ๐’ชU, and xโ‰yeโˆ— for each key index x queried to ๐’ชK.

๐– ๐–ฝ๐—๐’œ,ABSCIND-CCAโข(ฮบ):=|Prโก[(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹);(m0,m1,x,ysโˆ—,yeโˆ—,sโขt)โ†๐’œ1{๐’ชK,๐’ชS,๐’ชU}โข(๐’ซโข๐’ซ);bโ†U{0,1};๐–ดโˆ—โ†๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,mb,๐’ฎโข๐’ฆx,ysโˆ—,yeโˆ—);bโ€ฒโ†๐’œ2{๐’ชK,๐’ชS,๐’ชU}โข(๐’ซโข๐’ซ,๐–ดโˆ—,sโขt):b=bโ€ฒโˆง๐–ญ๐–ฑ๐—‡]-12|.
Definition 2.17

Definition 2.17 (Selective-predicate IND-CCA security)

Similarly to Definition 2.16, except in this model, ๐’œ has to submit the challenge receiverโ€™s data-index yeโˆ— before receiving ๐’ซโข๐’ซ of ABSC and the challenge senderโ€™s data-index ysโˆ— in the challenge phase.

Remark 2.18

The selective-predicate IND-CCA (SP-IND-CCA) security model (Definition 2.17) is weaker than the APs-IND-CCA security model (Definition 2.16).

Definition 2.19

Definition 2.19 (Selective-predicates IND-CCA security)

Similarly to Definition 2.16, except in this model, ๐’œ has to submit the challenge receiverโ€™s data-index yeโˆ— and challenge senderโ€™s data-index ysโˆ— before receiving ๐’ซโข๐’ซ of ABSC.

Remark 2.20

Selective-predicates IND-CCA (SPs-IND-CCA) security model (Definition 2.19) is weaker than the SP-IND-CCA security model (Definition 2.17).

Definition 2.21

Definition 2.21 (Adaptive-predicates unforgeability)

An ABSC scheme is said to be adaptive-predicates existential unforgeable (APs-UF-CMA) if for all PPT ๐’œ, the advantage ๐– ๐–ฝ๐—๐’œ,ABSCUF-CMAโข(ฮบ) is at most a negligible function in ฮบ, where ๐’œ is provided the access to keyGen oracle ๐’ชK, signcrypt oracle ๐’ชS and unsigncrypt oracle ๐’ชU, and NRn is the natural restriction that (mโˆ—,ysโˆ—,yeโˆ—) was never queried to oracle ๐’ชS, and xโ‰ysโˆ— for each key index xโˆˆ๐’ณ queried to ๐’ชK oracle.

๐– ๐–ฝ๐—๐’œ,ABSCUF-CMAโข(ฮบ):=Prโก[(๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹);(๐–ดโˆ—,ysโˆ—,yeโˆ—)โ†๐’œ{๐’ชK,๐’ชS,๐’ชU}โข(๐’ซโข๐’ซ);mโˆ—โ†๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ดโˆ—,๐’ฎโข๐’ฆx,ysโˆ—,yeโˆ—);where โขxโˆผyeโˆ—:mโˆ—โ‰ โŠฅโˆง๐–ญ๐–ฑ๐—‡].
Definition 2.22

Definition 2.22 (Adaptive-predicates strong unforgeability)

The above unforgeability (Definition 2.21) is also called weak unforgeability in the sense that ๐’œ is not allowed to forge for the queried messages. In strong unforgeability (we use the notation APs-sUF-CMA), the restriction (m,ys,ye)โ‰ (mโˆ—,ysโˆ—,yeโˆ—) is replaced by (๐–ด,m,ys,ye)โ‰ (๐–ดโˆ—,mโˆ—,ysโˆ—,yeโˆ—), where U is the reply for the query (m,x,ys,ye) to oracle ๐’ชS.

Definition 2.23

Definition 2.23 (Selective-predicate strong unforgeability)

Similarly to Definition 2.22, except in this model, ๐’œ has to submit the challenge senderโ€™s data-index ysโˆ— before receiving ๐’ซโข๐’ซ of ABSC and the challenge receiverโ€™s data-index yeโˆ— at the time of forgery.

Remark 2.24

The selective-predicate sUF-CMA (SP-sUF-CMA) security model (Definition 2.23) is weaker than the APs-sUF-CMA security model (Definition 2.22).

Definition 2.25

Definition 2.25 (Selective-predicates strong unforgeability)

Similarly to Definition 2.22, except in this model, ๐’œ has to submit the challenge senderโ€™s data-index ysโˆ— and challenge receiverโ€™s data-index yeโˆ— before receiving ๐’ซโข๐’ซ of ABSC.

Remark 2.26

Selective-predicates sUF-CMA (SPs-sUF-CMA) security model (Definition 2.25) is weaker than the SP-sUF-CMA security model (Definition 2.23).

Discussion. In this paper, we are interested in ABSC based on โ€œcombined-frameworkโ€ (mainly) and โ€œindependent-frameworkโ€. In case of independent-framework, the system parameter is of the form ๐’‹:=(๐’‹s,๐’‹e), where ๐’‹s and ๐’‹e are the system parameters for the signing and encryption, respectively. The key space and associated data space are of the form ๐’ณ:=(๐’ณs,๐’ณe) and ๐’ด:=(๐’ดs,๐’ดe), where (๐’ณs,๐’ดs) and (๐’ณe,๐’ดe) are defined over ๐’‹s and ๐’‹e, respectively. For a combined-framework, ๐’‹:=๐’‹s=๐’‹e, ๐’ณ:=๐’ณs=๐’ณe, ๐’ด:=๐’ดs=๐’ดe and ๐’ฎโข๐’ฆx:=๐’ฎโข๐’ฆxs=๐’ฎโข๐’ฆxe, i.e., the signing key and decryption key are the same.

Variants of ABSC. Note that the system parameter ๐’‹=(๐’‹s,๐’‹e) is basically the universe, ๐’ฐ=(๐’ฐs,๐’ฐe). Let ฮ“s and ฮ“e be the policies over the universes ๐’ฐs and ๐’ฐe, respectively. Let As and Ae be the sets of attributes from the universes ๐’ฐs and ๐’ฐe, respectively. With the styles of ABS and ABE, there are four forms of ABSC, namely S-E-ABSC for Sโˆˆ{SP, KP}, Eโˆˆ{CP,KP}. More formally, the indices in SP-CP-ABSC, KP-KP-ABSC, SP-KP-ABSC and KP-CP-ABSC are respectively represented by

(xs:=As,ys:=ฮ“sxe:=Ae,ye:=ฮ“e),(xs:=ฮ“s,ys:=Asxe:=ฮ“e,ye:=Ae),(xs:=As,ys:=ฮ“sxe:=ฮ“e,ye:=Ae),(xs:=ฮ“s,ys:=Asxe:=Ae,ye:=ฮ“e).

We note that there are only two variants of ABSC based on combined-framework, viz., SP-CP-ABSC and KP-KP-ABSC.

3 Review of commit then encrypt and sign paradigm

In this section, we discuss the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm of [1] in details in two-user insider models and it can be easily extended to the multi-user insider model. Let ฮ ๐–ฏ๐–ช๐–ค:=(Gen-Enc, โ„ฐ, ๐’Ÿ), ฮ ๐–ฏ๐–ช๐–ฒ:=(Gen-Sign, ๐’ฎ, ๐’ฑ) and ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—:=(C.Setup, Commit, ๐–ฎ๐—‰๐–พ๐—‡) be the primitive encryption scheme, signature scheme and commitment scheme, respectively. Let R and S denote receiver and sender, respectively. The public parameters of the signcryption scheme are set as ๐’ซโข๐’ซ:=๐’žโข๐’ฆ, where ๐’žโข๐’ฆโ†C.Setupโข(1ฮบ). The receiverโ€™s public key and private key pair is obtained by running (๐’ซโข๐’ฆR,๐’ฎโข๐’ฆR)โ†Gen-Encโข(1ฮบ) and similarly the senderโ€™s public key and private key pair is (๐’ซโข๐’ฆS,๐’ฎโข๐’ฆS), where (๐’ซโข๐’ฆS,๐’ฎโข๐’ฆS)โ†Gen-Signโข(1ฮบ). To signcrypt a message m, the sender runs (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(m), then executes in parallel ฮดโ†๐’ฎโข(๐–ผ๐—ˆ๐—†,๐’ฎโข๐’ฆS) and ๐–ขโ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†, ๐’ซ๐’ฆR) and returns the signcryption ๐–ด:=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข). To unsigncrypt a signcryption U, the receiver runs ๐–ฟ๐—…๐–บ๐—€โ†๐’ฑโข(ฮด,๐’ซโข๐’ฆS) and ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โ†๐’Ÿโข(๐–ข,๐’ฎโข๐’ฆR) in parallel. If ๐–ฟ๐—…๐–บ๐—€=๐–ณ๐—‹๐—Ž๐–พ, it returns ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†), else โŠฅ.

For the proof of confidentiality of the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm, An et al. [1] assumed a property of the commitment scheme that for each decom there is a unique com. In this paper, we refer to this property as the concealment property (defined in Section 2.3). Actually, in the confidentiality proof a weaker version of the concealment property, called relaxed-concealment, was used. The security of the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm are guaranteed by the following theorem.

Theorem 3.1

Theorem 3.1 ([1, Theorem 4])

Assume that ฮ PKE is IND-gCCA secure, ฮ PKS is UF-CMA secure and ฮ Commit is a commitment scheme. Suppose ฮ Commit has the relaxed-concealment property. Then, in the insider security model, we have:

  1. ๐’žโขtโขโ„ฐ&๐’ฎ is IND-gCCA secure if and only if ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— satisfies the hiding properties.

  2. ๐’žโขtโขโ„ฐ&๐’ฎ is UF-CMA secure if and only if ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— satisfies the relaxed-binding properties.

Thus, the security of ฮ PKE and ฮ PKS are preserved in CโขtโขE&S if and only if ฮ Commit has the hiding and relaxed-binding and relaxed-concealment properties.

Requirement of relaxed-concealment. Here we provide a motivation for using the relaxed concealment property of the commitment scheme in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm. This motivation will be used to describe the design principle of the new paradigm ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ in Section 4.1. As discussed in [1, Section 5], a commitment scheme whose decommitment is of the form ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†=(m,r), where r is the randomness used in Commit, possesses the concealment property. We pick up the commitment scheme from Halevi and Micali [18], which is not in the above form. This commitment scheme has hiding and binding properties in the standard model, but does not enjoy the relaxed-concealment property. We briefly describe Halevi and Micaliโ€™s commitment scheme. Let H:={h:Tโ†’โ„ณ} be a family of universal hash functions, where โ„ณ:={0,1}n is a message space and T:={0,1}โ„“. Let โ„ณโข๐’Ÿ:Tโ†’{0,1}k be a message digest function. To commit a message mโˆˆโ„ณ, it chooses a member (x,h)โˆˆTร—H randomly such that hโข(x)=m and returns (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†), where ๐–ผ๐—ˆ๐—†:=(h,y), y:=โ„ณโข๐’Ÿโข(x) and ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†:=x. To open the commitment, it checks y=?โ„ณโข๐’Ÿโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) and if equality holds, returns hโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†), else โŠฅ. Now we show that the above commitment scheme does not possess the relaxed-concealment property. An adversary ๐’œ gives a message m of its own choice. Then ๐’œ is provided (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) of the message m, where ๐–ผ๐—ˆ๐—†:=(h,y), y:=โ„ณโข๐’Ÿโข(x), m=hโข(x) and ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†:=x. Finally, ๐’œ submits ๐–ผ๐—ˆ๐—†~:=(h~,y) as an evidence for breaking the relaxed-concealment property, where h~ (โ‰ h) is any member of the family H. Since ๐–ผ๐—ˆ๐—†โ‰ ๐–ผ๐—ˆ๐—†~ and ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†~,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)=h~โข(x)=m~โ‰ โŠฅ, (๐–ผ๐—ˆ๐—†~,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) is a valid commitment and decommitment pair.

Using the above commitment scheme [18], we show that signcryption in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm does not preserve IND-gCCA security of the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค in insider model. In fact, we show that the signcryption in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm is not even OW-gCCA secure. We consider the family of universal hash functions to be H:={hL,b:Lโˆˆ{0,1}nร—โ„“,bโˆˆ{0,1}n}, where hL,b is defined by hL,bโข(r):=LโขrโŠ•b and โŠ• stands for the bitwise XOR-operation. An adversary ๐’œ is given a challenge signcryption ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) of an arbitrary message mโˆ—, where

๐–ผ๐—ˆ๐—†โˆ—=(hโˆ—,yโˆ—),hโˆ—:=hLโˆ—,bโˆ—,mโˆ—=hโˆ—โข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—),๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—โˆˆT,
yโˆ—=โ„ณโข๐’Ÿโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—),๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—),ฮดโˆ—โ†๐’ฎโข(๐–ผ๐—ˆ๐—†โˆ—,๐’ฎโข๐’ฆSโˆ—).

The adversary ๐’œ picks b~โˆˆ{0,1}nโˆ–{0โขโ‹ฏโข0} and sets

h~:=hLโˆ—,bโˆ—โŠ•b~.

Using ๐’ฎโข๐’ฆSโˆ— of the sender, ๐’œ produces a new signcryption ๐–ด~:=(๐–ผ๐—ˆ๐—†~,ฮด~,๐–ขโˆ—), where ๐–ผ๐—ˆ๐—†~:=(h~,yโˆ—) and ฮด~:=๐’ฎโข(๐–ผ๐—ˆ๐—†~,๐’ฎโข๐’ฆSโˆ—). Since

๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐–ด~,๐’ฎโข๐’ฆRโˆ—,๐’ซโข๐’ฆSโˆ—)=h~โข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)=hLโˆ—,bโˆ—โŠ•b~โข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)
=hLโˆ—,bโˆ—โข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โŠ•b~=hโˆ—โข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โŠ•b~=mโˆ—โŠ•b~
โ‰ mโˆ—=๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐–ดโˆ—,๐’ฎโข๐’ฆRโˆ—,๐’ซโข๐’ฆSโˆ—),

we have โ„›โข((๐–ดโˆ—,๐’ซโข๐’ฆSโˆ—),(๐–ด~,๐’ซโข๐’ฆSโˆ—))=๐–ฅ๐–บ๐—…๐—Œ๐–พ. The adversary ๐’œ makes an unsigncrypt oracle query on (๐–ด~,๐’ซโข๐’ฆSโˆ—) and gets back mโˆ—โŠ•b~ as reply. Since b~ is known to ๐’œ, it recovers the underlying message mโˆ— of ๐–ดโˆ—. Hence, the signcryption in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm using the commitment scheme of [18] is not OW-gCCA secure in the insider model. We note that the above attack happens due to the following reason. The signcryptions ๐–ดโˆ— and ๐–ด~ have different commitments ๐–ผ๐—ˆ๐—†โˆ— and ๐–ผ๐—ˆ๐—†~, but identical decommitment ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—, such that (๐–ผ๐—ˆ๐—†~,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) is a valid commitment and decommitment pair. The above happens due to the lack of the relaxed-concealment property of [18]. Therefore, the relaxed-concealment property is a very crucial requirement for preserving IND-gCCA security in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm.

3.1 Ambiguity in proof of confidentiality

As discussed above, IND-gCCA security of ฮ ๐–ฏ๐–ช๐–ค is preserved in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm if the commitment scheme has hiding and relaxed-concealment properties. But, the IND-gCCA security proof of the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm described in [1] is ambiguous. In fact, their proof of confidentiality does not even work for IND-CPA security. Here is the illustration. Let ฮ ๐–ฏ๐–ช๐–คโ€ฒ:=(Gen-Encโ€ฒ,โ„ฐโ€ฒ,๐’Ÿโ€ฒ) be an auxiliary encryption scheme defined as follows:

  1. Gen-Encโ€ฒโข(1ฮบ): Gen-Encโข(1ฮบ);

  2. โ„ฐโ€ฒโข(m): returns ๐–ด:=(๐–ผ๐—ˆ๐—†,๐–ข), where (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(m) and ๐–ขโ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) (for simplicity, we omit either the private key or public key from the inputs of the respective algorithms);

  3. ๐’Ÿโ€ฒโข(๐–ด): returns ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐’Ÿโข(๐–ข)), where ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข).

To conclude the confidentiality part of Theorem 3.1, it is sufficient to prove the following lemma.

Lemma 3.2

Lemma 3.2 (cf. [1, Lemma 1])

If ฮ PKE is IND-gCCA secure and ฮ Commit has hiding and relaxed-concealment properties, then ฮ PKEโ€ฒ is IND-gCCA secure.

To prove this lemma, An et al. [1] defined two environments: Env1 and Env2. Env1 is the real environment and Env2 is the same as Env1 except for the challenge ciphertext construction, i.e., in Env2 the challenge ciphertext is of the form ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โข(0),๐–ขโˆ—), where (๐–ผ๐—ˆ๐—†โข(0),๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โข(0))โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(0) and (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mb) with bโ†U{0,1} and ๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—). An et al. first showed that Env1 and Env2 are indistinguishable under the hiding property of the commitment scheme; see the proof of [1, Lemma 1โ€‰(B)]. Then they showed that ๐’œ has at most negligible advantage in Env2 if the primitive encryption scheme is IND-gCCA secure and ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— has the relaxed-concealment property.

We claim that Env1 and Env2 are not indistinguishable under the hiding property of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—. Indeed, we assume that the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค is not OW-CPA. For example, consider the encryption function of ฮ ๐–ฏ๐–ช๐–ค to be the identity function. So, one can recover the message from a given ciphertext C. The only difference between Env1 and Env2 is the construction of the challenge ciphertext in the auxiliary encryption scheme ฮ ๐–ฏ๐–ช๐–คโ€ฒ. Suppose the challenge ciphertext ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†~,๐–ขโˆ—) is given to ๐’œ, where (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mb), ๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) and ๐–ผ๐—ˆ๐—†~โ†U{๐–ผ๐—ˆ๐—†โˆ—,๐–ผ๐—ˆ๐—†โข(0)}. Since ฮ ๐–ฏ๐–ช๐–ค is not OW-CPA, so ๐’œ can recover ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ— from ๐–ขโˆ—. Then ๐’œ runs ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†~,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) and if Open outputs m0 or m1, then ๐’œ confirms Env1, else Env2.

Essentially, we found an issue in the simulation described in [1]. An et al. showed that if an adversary ๐’œโ€ฒ can distinguish Env1 and Env2, then a simulator ๐’œ1 can be constructed to break the hiding property of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— as follows. In the simulation, ๐’œโ€ฒ sends two equal length messages m0 and m1 to ๐’œ1. Then ๐’œ1 picks bโ†U{0,1} and sends 0,mb to the challenger ๐’žโขโ„‹ of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—. Then ๐’žโขโ„‹ chooses mโˆ—โ†U{0,mb} and returns ๐–ผ๐—ˆ๐—†โˆ— to ๐’œ1, where (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mโˆ—). Now, ๐’œ1 answers the challenge ciphertext ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,๐–ขโˆ—โ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)) for ฮ ๐–ฏ๐–ช๐–คโ€ฒ to ๐’œโ€ฒ. However, it was not clear from the simulation proof, nor could we perceive, how ๐’œ1 could construct the challenge ciphertext ๐–ดโˆ— without the knowledge of ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—. We therefore give a revised proof below.

3.2 Revised proof of ๐’žโขtโขโ„ฐ&๐’ฎ paradigm

Theorem 3.3

If ฮ PKE is IND-gCCA secure and the commitment scheme ฮ Commit has hiding and relaxed-concealment properties, then the auxiliary encryption scheme ฮ PKEโ€ฒ is IND-gCCA secure.

Proof.

Let R be the underlying decryption-respecting relation of the IND-gCCA secure encryption scheme ฮ ๐–ฏ๐–ช๐–ค. We define a relation โ„›โ€ฒ over ciphertexts for ฮ ๐–ฏ๐–ช๐–คโ€ฒ as follows: โ„›โ€ฒโข(๐–ด1,๐–ด2)=๐–ณ๐—‹๐—Ž๐–พ if โ„›โข(๐–ข1,๐–ข2)=๐–ณ๐—‹๐—Ž๐–พ and ๐–ผ๐—ˆ๐—†1=๐–ผ๐—ˆ๐—†2. It is easy to check that โ„›โ€ฒ is a decryption-respecting relation over the ciphertexts. Let ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,๐–ขโˆ—) denote the challenge ciphertext, where (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mb) and ๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—). Let ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข) be any query to the decrypt oracle. We define an event

๐–ค:=[(๐–ผ๐—ˆ๐—†โˆ—โ‰ ๐–ผ๐—ˆ๐—†)โˆงโ„›(๐–ขโˆ—,๐–ข)=๐–ณ๐—‹๐—Ž๐–พโˆง๐–ฎ๐—‰๐–พ๐—‡(๐–ผ๐—ˆ๐—†,๐’Ÿ(๐–ข))โ‰ โŠฅ].

We will apply the hybrid arguments over the following games:

  1. GameReal: The original IND-gCCA game of the encryption scheme.

  2. Game0: Same as GameReal, except for the answers to the decrypt queries satisfying the event E after the challenge phase. In this case, ๐’žโขโ„‹ always returns โŠฅ to the adversary ๐’œ.

  3. Game1: Same as Game0, except for the challenge ciphertext, viz., ๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†r),๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโ†UD, where D is the decommitment space.

Using Lemmas 3.4, 3.5 and 3.6, we have

๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒIND-gCCAโข(ฮบ)=๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒRealโข(ฮบ)
โ‰ค|๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒRealโข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ0โข(ฮบ)|+|๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ1โข(ฮบ)|+|๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ1โข(ฮบ)|
โ‰ค๐– ๐–ฝ๐—โ„ฌ0,๐–ข๐—ˆ๐—†๐—†๐—‚๐—RConcealโข(ฮบ)+2.๐– ๐–ฝ๐—โ„ฌ1,๐–ฏ๐–ช๐–คIND-gCCAโข(ฮบ)+๐– ๐–ฝ๐—โ„ฌ2,๐–ข๐—ˆ๐—†๐—†๐—‚๐—Hidingโข(ฮบ)

where โ„ฌ0,โ„ฌ1 and โ„ฌ2 are PPT algorithms whose running times are the same as that of ๐’œ. This concludes the theorem. โˆŽ

Lemma 3.4

GameReal and Game0 are indistinguishable under the relaxed-concealment property of ฮ Commit. That is, for any adversary A, there is a PPT algorithm B such that

|๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒRealโข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ0โข(ฮบ)|โ‰ค๐– ๐–ฝ๐—โ„ฌ,๐–ข๐—ˆ๐—†๐—†๐—‚๐—RConcealโข(ฮบ).

Proof.

First of all note that both games GameReal and Game0 are identical except for the answers to the decrypt queries satisfied by the event E. Suppose there is an adversary ๐’œ who can distinguish the games with advantage ฯต. Then we will establish a PPT algorithm โ„ฌ for breaking the relaxed-concealment property of the commitment scheme ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— with probability at least ฯต. Let ๐’žโขโ„‹ be the challenger for the commitment scheme ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—. The challenger first runs the setup algorithm of the commitment scheme and gives the public commitment key ๐’žโข๐’ฆ to โ„ฌ. Then โ„ฌ returns the same key ๐’žโข๐’ฆ to the adversary ๐’œ.

Phase 1 query. Let ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข) be any decrypt query made by ๐’œ. The simulator โ„ฌ returns ๐’Ÿโ€ฒโข(๐–ด)=๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐’Ÿโข(๐–ข)) to ๐’œ.

Challenge phase.๐’œ submits two equal length messages m0 and m1 to โ„ฌ. Then โ„ฌ picks bโ†U{0,1} and sends mb to the challenger ๐’žโขโ„‹. The challenger ๐’žโขโ„‹ runs (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mb) and gives (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) to โ„ฌ. Then โ„ฌ executes ๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) and returns ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,๐–ขโˆ—) to ๐’œ.

Phase 2 query. Let ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข) be any decrypt query made by ๐’œ. If U is a valid query, then we have โ„›โ€ฒโข(๐–ดโˆ—,๐–ด)=๐–ฅ๐–บ๐—…๐—Œ๐–พ. For this query, if the event E occurs, then โ„ฌ returns (๐–ผ๐—ˆ๐—†,๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) to ๐’žโขโ„‹ and aborts. Otherwise it answers similarly as phase 1 query.

Guess.๐’œ sends a guess bโ€ฒ to โ„ฌ. (โ„ฌ does nothing with bโ€ฒ.)

Analysis. The probability of the event E is ฯต. By this event, we have ๐–ผ๐—ˆ๐—†โˆ—โ‰ ๐–ผ๐—ˆ๐—†, โ„›โข(๐–ขโˆ—,๐–ข)=๐–ณ๐—‹๐—Ž๐–พ and ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐’Ÿโข(๐–ข))=๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ‰ โŠฅ. Now โ„›โข(๐–ขโˆ—,๐–ข)=๐–ณ๐—‹๐—Ž๐–พ implies that ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—=๐–ฝ๐–พ๐–ผ๐—ˆ๐—†. Therefore, (๐–ผ๐—ˆ๐—†,๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—) is a witness for breaking the relaxed-concealment property. โˆŽ

Lemma 3.5

Game0 and Game1 are indistinguishable under IND-gCCA security of the primitive encryption scheme ฮ PKE. That is, for any adversary A, there is a PPT algorithm B such that

12โข|๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ1โข(ฮบ)|=๐– ๐–ฝ๐—โ„ฌ,๐–ฏ๐–ช๐–คIND-gCCAโข(ฮบ).

Proof.

If ๐’œ can break the indistinguishability of the games with advantage ฯต, then we will construct a PPT algorithm โ„ฌ for breaking the IND-gCCA security of ฮ ๐–ฏ๐–ช๐–ค with probability ฯต. Let ๐’žโขโ„‹ be the challenger for the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค. โ„ฌ first runs the setup algorithm of the commitment scheme and gives the public commitment key ๐’žโข๐’ฆ to ๐’œ.

Phase 1 query. Let ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข) be any decrypt query made by ๐’œ. โ„ฌ makes a decrypt query on C to ๐’žโขโ„‹ and obtains ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†=๐’Ÿโข(๐–ข) as reply. It then returns ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) to ๐’œ.

Challenge phase.๐’œ submits two equal length messages m0 and m1 to โ„ฌ. Then โ„ฌ picks bโ†U{0,1} and runs (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mb). Then it chooses ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโ†UD and sends (๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†r) to the challenger ๐’žโขโ„‹ who chooses ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†ฮฒโ†U{๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†r} and sends ๐–ขโˆ—โ†โ„ฐโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†ฮฒ) to โ„ฌ. The simulator โ„ฌ sets ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,๐–ขโˆ—) and returns it to ๐’œ.

Phase 2 query. Let ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข) be any decrypt query made by ๐’œ. โ„ฌ makes a decrypt query on C to ๐’žโขโ„‹. If ๐’žโขโ„‹ replies โŠฅ, then โ„ฌ returns โŠฅ, else ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) to ๐’œ.

Guess.๐’œ sends a guess bโ€ฒ to โ„ฌ. If b=bโ€ฒ, then โ„ฌ replies ฮฒโ€ฒ=0, else ฮฒโ€ฒ=1.

Analysis. The only difference between Game0 and Game1 is the challenge construction. For a valid decrypt query on ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข), we have โ„›โ€ฒโข(๐–ดโˆ—,๐–ด)=๐–ฅ๐–บ๐—…๐—Œ๐–พ which in turn implies three possible cases:

  1. [๐–ผ๐—ˆ๐—†โˆ—โ‰ ๐–ผ๐—ˆ๐—†โˆงโ„›โข(๐–ขโˆ—,๐–ข)=๐–ณ๐—‹๐—Ž๐–พ],

  2. [๐–ผ๐—ˆ๐—†โˆ—=๐–ผ๐—ˆ๐—†โˆงโ„›โข(๐–ขโˆ—,๐–ข)=๐–ฅ๐–บ๐—…๐—Œ๐–พ],

  3. [๐–ผ๐—ˆ๐—†โˆ—โ‰ ๐–ผ๐—ˆ๐—†โˆงโ„›(๐–ขโˆ—,๐–ข)=๐–ฅ๐–บ๐—…๐—Œ๐–พ].

Since in the last two cases โ„›โข(๐–ขโˆ—,๐–ข)=๐–ฅ๐–บ๐—…๐—Œ๐–พ, โ„ฌ makes a decrypt query on C to ๐’žโขโ„‹ and obtains decom as reply. โ„ฌ then returns ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†) to ๐’œ. The only case to discuss is (a). Note that in the simulation ๐’œ is given โŠฅ for this case. We divide case (a) into two subcases:

  1. E,

  2. [๐–ผ๐—ˆ๐—†โˆ—โ‰ ๐–ผ๐—ˆ๐—†โˆงโ„›โข(๐–ขโˆ—,๐–ข)=๐–ณ๐—‹๐—Ž๐–พโˆง๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐’Ÿโข(๐–ข))=โŠฅ].

By definition of Game0 and Game1, the adversary is returned โŠฅ if E occurs. So the only subcase left is (a2). Since in this case ๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐’Ÿโข(๐–ข))=โŠฅ, ๐’œ will get โŠฅ as reply. From the challenge phase, it is straightforward that the challenge ciphertext is properly distributed. Therefore, all the answers to the oracle queries and the challenge ciphertext are perfectly simulated. The advantage of โ„ฌ in breaking IND-gCCA security of the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค is given by

๐– ๐–ฝ๐—โ„ฌ,๐–ฏ๐–ช๐–คIND-gCCA(ฮบ)=|๐–ฏ๐—‹[ฮฒ=ฮฒโ€ฒ]-12|
=|๐–ฏ๐—‹[ฮฒ=0,ฮฒโ€ฒ=0]+๐–ฏ๐—‹[ฮฒ=1,ฮฒโ€ฒ=1]-12|
=|12๐–ฏ๐—‹[ฮฒโ€ฒ=0|ฮฒ=0]+12๐–ฏ๐—‹[ฮฒโ€ฒ=1|ฮฒ=1]-12|
=|12๐–ฏ๐—‹[ฮฒโ€ฒ=0|ฮฒ=0]-12๐–ฏ๐—‹[ฮฒโ€ฒ=0|ฮฒ=1]|
=|12๐–ฏ๐—‹[b=bโ€ฒ|ฮฒ=0]-12๐–ฏ๐—‹[b=bโ€ฒ|ฮฒ=1]|
=12โข|๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ1โข(ฮบ)|.โˆŽ

Lemma 3.6

For any adversary A, there is a PPT algorithm B such that

๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ1โข(ฮบ)โ‰ค๐– ๐–ฝ๐—โ„ฌ,๐–ข๐—ˆ๐—†๐—†๐—‚๐—Hidingโข(ฮบ).

Proof.

We will establish a PPT algorithm โ„ฌ for breaking the hiding property of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— with at least advantage ฯต if ๐’œ has an advantage ฯต:=๐– ๐–ฝ๐—๐’œ,๐–ฏ๐–ช๐–คโ€ฒ1โข(ฮบ) in Game1. Let ๐’žโขโ„‹ be the challenger for the commitment scheme ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—. Then ๐’žโขโ„‹ first runs the setup algorithm of the commitment scheme and gives the public commitment key ๐’žโข๐’ฆ to โ„ฌ. Then the same key ๐’žโข๐’ฆ is given to ๐’œ.

Phase 1 query. Let ๐–ด=(๐–ผ๐—ˆ๐—†,๐–ข) be any decrypt query made by ๐’œ. The simulator โ„ฌ returns ๐’Ÿโ€ฒโข(๐–ด) to ๐’œ.

Challenge phase.๐’œ submits two equal length messages m0 and m1 to โ„ฌ. Then โ„ฌ submits the same message pair (m0,m1) to ๐’žโขโ„‹. The challenger ๐’žโขโ„‹ picks bโ†U{0,1} and runs (๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mb). Then ๐’žโขโ„‹ sends the challenge commitment part ๐–ผ๐—ˆ๐—†โˆ— to โ„ฌ. Then โ„ฌ chooses ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโ†UD and sends the challenge ciphertext ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†r) to ๐’œ.

Phase 2 query. Same as phase 1 except that โ„ฌ returns โŠฅ for โ„›โ€ฒโข(๐–ดโˆ—,๐–ด)=๐–ฅ๐–บ๐—…๐—Œ๐–พ.

Guess.๐’œ sends a guess bโ€ฒ to โ„ฌ. Then โ„ฌ returns the same bโ€ฒ to ๐’žโขโ„‹.

Analysis. It is straightforward.โˆŽ

Extension to multi-user setting. Although the paradigm and its proof are discussed in a two-user setting, it is very natural to extend it to a multi-user setting by adding the identities of the users as given in [1]. In fact, a signcryption U in multi-user setting is given by ๐–ด:=(๐–ผ๐—ˆ๐—†,๐’ฎ(๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸR),โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸS),โ„๐’ŸS,โ„๐’ŸR), where โ„โข๐’ŸS and โ„โข๐’ŸR are the identities[5] of S and R, respectively, and (๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(m).

Remark 3.7

Attribute-based signcryption in the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm can be obtained similarly just by replacing โ„โข๐’ŸR (resp. โ„โข๐’ŸS) by receiverโ€™s policy ฮ“e (resp. senderโ€™s policy ฮ“s).

4 Strongly unforgeable and IND-CCA secure signcryption

To start with our result, we first discuss some drawbacks of the different paradigms ๐’žโขtโขโ„ฐ&๐’ฎ, โ„ฐโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐ of [1]. The IND-CCA security (resp. strong unforgeability) is not preserved in the โ„ฐโขtโข๐’ฎ (resp. ๐’ฎโขtโขโ„ฐ) approach. Similarly, neither strong unforgeability nor IND-CCA security is preserved in the ๐’žโขtโขโ„ฐ&๐’ฎ approach. Moreover, to entertain the IND-CCA security (resp. strong unforgeability) in ๐’ฎโขtโขโ„ฐ and ๐’žโขtโขโ„ฐ&๐’ฎ (resp. โ„ฐโขtโข๐’ฎ and ๐’žโขtโขโ„ฐ&๐’ฎ) paradigms, the primitive encryption (resp. signature) scheme must be IND-CCA (resp. sUF-CMA) secure. In this section, the IND-gCCA security (resp. weak unforgeability) is lifted to IND-CCA security (resp. strong unforgeability) in all the paradigms using the power of OTS. Although the technique (based on OTS) in [19] can be used for sUF-CMA conversion, tackling both the confidentiality and authenticity using OTS is very challenging because if one of them is not properly taken care of, it may be vulnerable to attack. We manage the (sUF-CMA) OTS very carefully to have both the dM-IND-iCCA security and dM-sUF-iCMA in all the paradigms from the IND-gCCA secure encryption scheme and UF-CMA signature scheme.

4.1 Strong unforgeability and IND-CCA security in ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ approach

Let

ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—:=(C.Setup,๐–ข๐—ˆ๐—†๐—†๐—‚๐—,๐–ฎ๐—‰๐–พ๐—‡),ฮ ๐–ฏ๐–ช๐–ค:=(Gen-Enc,โ„ฐ,๐’Ÿ),
ฮ ๐–ฏ๐–ช๐–ฒ:=(Gen-Sign,๐’ฎ,๐’ฑ),ฮ ๐–ฎ๐–ณ๐–ฒ:=(๐–ฆ๐–พ๐—‡,OTS.Sign,OTS.Ver)

be the commitment scheme, primitive encryption scheme, primitive signature scheme and one-time signature scheme, respectively. The proposed construction of the signcryption scheme

ฮ ๐–ฒ๐–ข:=(๐–ฒ๐–พ๐—๐—Ž๐—‰,๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡S,๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡R,๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—,๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—)

is given in Scheme 4.1. We note that the sender sends the signcryption U to the receiver together with the public keys (๐’ซโข๐’ฆR,๐’ซโข๐’ฆS).

Scheme 4.1

Scheme 4.1 (Signcryption in CโขtโขE&SโขtโขS approach)

  1. ๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ): It runs ๐’žโข๐’ฆโ†C.Setupโข(1ฮบ) and sets ๐’ซโข๐’ซ:=๐’žโข๐’ฆ. (For brevity, we omit ๐’ซโข๐’ซ in the rest of this section.)

  2. ๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡S: It runs Gen-Signโข(1ฮบ) to produce the public key and private key pair (๐’ซโข๐’ฆS,๐’ฎโข๐’ฆS).

  3. ๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡R: It runs Gen-Encโข(1ฮบ) to produce the public key and private key pair (๐’ซโข๐’ฆR,๐’ฎโข๐’ฆR).

  4. ๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(m,๐’ฎโข๐’ฆS,๐’ซโข๐’ฆR):=((๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—(m);โˆฅ(๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„)โ†OTS.Gen(1ฮบ);ฮดwโ†๐’ฎ(๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„,๐’ฎ๐’ฆS);โˆฅ๐–ขโ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„,๐’ซ๐’ฆR);ฮดoโ†OTS.Sign(ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸR,๐—Œ๐—‚๐—€๐—‡๐—„);it returns ๐–ด:=(๐–ผ๐—ˆ๐—†,ฮด:=(ฮดw,ฮดo,๐—๐—„),๐–ข)).

  5. ๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐–ด,๐’ฎโข๐’ฆR,๐’ซโข๐’ฆS):={๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)if โข(OTS.Ver(ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸR,ฮดo,๐—๐—„)=1;โˆฅ๐’ฑ(๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„,ฮดw,๐’ซ๐’ฆS)=1;โˆฅlet ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„โ€ฒ:=๐’Ÿ(๐–ข,๐’ฎ๐’ฆR);๐—๐—„=๐—๐—„โ€ฒ;where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด=(ฮดw,ฮดo,๐—๐—„),๐–ข)),โŠฅotherwise.

Before describing the intuition of our construction, we first review why the ๐’žโขtโขโ„ฐ&๐’ฎ-paradigm of [1] does not provide the stronger security. The reasons are described as follows.

  1. In the dM-IND-iCCA model, the adversary ๐’œ can alter the challenge signcryption ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,ฮดwโˆ—,๐–ขโˆ—) to a new signcryption ๐–ด~:=(๐–ผ๐—ˆ๐—†โˆ—,ฮด~w,๐–ขโˆ—), where ๐’œ generates the new signature ฮด~w on the same message com using the key ๐’ฎโข๐’ฆSโˆ—. Then ๐’œ makes a unsigncrypt query on ๐–ด~ and gets the message mb as reply.

  2. Similarly in the dM-sUF-iCMA model, ๐’œ can alter a given signcryption ๐–ด:=(๐–ผ๐—ˆ๐—†,ฮดw,๐–ข) for a receiverโ€™s ๐’ซโข๐’ฆR to another signcryption ๐–ด~:=(๐–ผ๐—ˆ๐—†,ฮดw,๐–ข~), where ๐–ข~ is computed as follows. Since ๐’œ knows ๐’ฎโข๐’ฆR, it first extracts out decom from C, then re-encrypts to produce the new ciphertext ๐–ข~.

  3. Now we discuss an attack, where the ๐’žโขtโขโ„ฐ&๐’ฎ paradigm fails to provide the weak unforgeability (in the dM-UF-iCMA model) even if the primitive signature scheme ฮ ๐–ฏ๐–ช๐–ฒ is strongly unforgeable. This attack is known as identity fraud attack [1] in multi-user setting. In this attack, ๐’œ first obtains a signcryption ๐–ด:=(๐–ผ๐—ˆ๐—†,ฮดw,๐–ข) for (m,๐’ซโข๐’ฆR,๐’ซโข๐’ฆS). Then ๐’œ extracts out decom from C, then re-encrypts the message decom for different receiverโ€™s โ„โข๐’ŸR~ to produce the new ciphertext ๐–ข~. So, ๐–ด~:=(๐–ผ๐—ˆ๐—†,ฮดw,๐–ข~) is a forgery for the new message (m,๐’ซโข๐’ฆR~,๐’ซโข๐’ฆS). The above attack can be prevented by appending the receiverโ€™s identity โ„โข๐’ŸR to the message of ฮ ๐–ฏ๐–ช๐–ฒ and the senderโ€™s identity โ„โข๐’ŸS to the message of ฮ ๐–ฏ๐–ช๐–ค as suggested in [1].

The review says that the above attacks happened due to the ability of ๐’œ to alter a given signcryption U to new signcryption ๐–ด~ by changing its components, viz., ฮดw and C.

Intuition of our design. To prevent the aforementioned attacks, we sign both the components ฮดw and C together with com and โ„โข๐’ŸR, i.e., ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸR using a strongly unforgeable OTS. In this new design the verification key vk of OTS is embedded in both routines ๐’ฎ and โ„ฐ. More closely, the signing message com for ๐’ฎ is changed to ๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„ and the plaintext decom for โ„ฐ is changed to ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„. Our approach basically extends ๐’žโขtโขโ„ฐ&๐’ฎ to a new paradigm called โ€œCommit then Encrypt and Sign then Signโ€ (๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ) (as referred by [36]). The dM-IND-iCCA security of the proposed construction ฮ ๐–ฒ๐–ข in Scheme 4.1 relies on the hiding property of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—, IND-gCCA security of ฮ ๐–ฏ๐–ช๐–ค and strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ. The dM-sUF-iCMA security of the proposed construction relies on UF-CMA security of ฮ ๐–ฏ๐–ช๐–ฒ and strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ.

Role of OTS. The OTS prevents changing a given signcryption to a new signcryption. Indeed, let (๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„) be a key-pair for the OTS. To generate a signcryption, vk is binded in both components ฮดw and C, and all the components ฮดw, C, com and โ„โข๐’ŸR are signed together by the OTS scheme using the key signk.

  1. Strong unforgeability of ฮ SC. Suppose ๐’œ gets a signcryption U by querying the signcrypt oracle. Since we assume the weak unforgeability of ฮ ๐–ฏ๐–ช๐–ฒ, so ๐’œ can not forge to ฮ ๐–ฏ๐–ช๐–ฒ for a new message (other than ๐–ผ๐—ˆ๐—†โˆฅ๐—๐—„). So, the only parts ๐’œ may change are ฮดo, C and โ„โข๐’ŸR to produce the new signcryption ๐–ด~. Since vk is unaltered and ฮ ๐–ฎ๐–ณ๐–ฒ has the strong unforgeability, the above modification is not possible.

  2. Confidentiality of ฮ SC. Let ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—),๐–ขโˆ—) be the challenge signcryption for ฮ ๐–ฒ๐–ข in the dM-IND-iCCA model. Note that ๐–ดโˆ— is the signcryption of mb, where bโ†U{0,1}. Since ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— has the hiding property, so ๐–ผ๐—ˆ๐—†โˆ— does not leak any information of b. Since ฮ ๐–ฏ๐–ช๐–ค has IND-gCCA security, so ๐–ขโˆ— does not leak any information of b. To get the benefit of unsigncrypt oracle, first ๐’œ will alter ๐–ดโˆ— to ๐–ด~ without changing ๐–ขโˆ— (as it only contains the information of b) and then it makes an unsigncrypt query on ๐–ด~. Since ๐–ขโˆ— is unchanged, so is ๐—๐—„โˆ—. So, the only parts ๐’œ may change are ฮดoโˆ—, ฮดwโˆ—, ๐–ผ๐—ˆ๐—†โˆ— and โ„โข๐’ŸRโˆ— to produce the new signcryption ๐–ด~. Since ฮ ๐–ฎ๐–ณ๐–ฒ has strong unforgeability, the last modification is not possible.

Reason for keeping com to the message of OTS. In this design, if com is not put to the message of OTS, then we can find an attack in the dM-IND-iCCA model as follows. Suppose, ฮ ๐–ฏ๐–ช๐–ฒ and ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— lack the 1-1 property[6] and the relaxed-concealment property, respectively. Let ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—),๐–ขโˆ—) be the challenge signcryption. Then following the attack discussed in Section 3 (using the commitment scheme of [18]), ๐’œ may produce a valid signcryption ๐–ด~:=(๐–ผ๐—ˆ๐—†~,ฮดโˆ—,๐–ขโˆ—) by changing only the commitment part of ๐–ดโˆ—, where ฮดwโˆ— is a signature for both messages ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ— and ๐–ผ๐—ˆ๐—†~โˆฅ๐—๐—„โˆ—. Then ๐’œ continues the attack as discussed in Section 3 to break the confidentiality in the dM-IND-iCCA model. Therefore, if we assume either the 1-1 property of ฮ ๐–ฏ๐–ช๐–ฒ or the relaxed-concealment property of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—, then we do not require to add com to the message of OTS.

Reason for keeping IโขDR to the message of OTS. The reason for adding the receiverโ€™s identity โ„โข๐’ŸR to the message of OTS is to prevent the identity fraud attack.

Theorem 4.2

If the primitive encryption scheme ฮ PKE is IND-gCCA secure, the commitment scheme ฮ Commit has the hiding property and ฮ OTS is a strongly unforgeable one-time signature scheme, then the proposed signcryption scheme ฮ SC in Scheme 4.1 is dM-IND-iCCA secure (Definition 2.8).

Proof.

Let ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) denote the challenge signcryption for (๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—), where ฮดโˆ—=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—). Let (๐–ด,๐’ซโข๐’ฆS) be any unsigncrypt query, where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข) and ฮด=(ฮดw,ฮดo,๐—๐—„). We define an event

๐–ค:=(๐—๐—„โˆ—=๐—๐—„).

We will apply the hybrid arguments over the following games:

  1. GameReal: The original dM-IND-iCCA game of the signcryption scheme.

  2. Game0: Same as GameReal, except that on unsigncrypt query the challenger always returns โŠฅ if E occurs.

  3. Game1: Same as Game0, except for the construction of challenge signcryption, viz., ๐–ขโˆ—โ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโˆฅ๐—๐—„โˆ—), ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโ†UD, where D is the decommitment space.

Using Lemmas 4.3, 4.4 and 4.5, we have the following reduction:

๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขIND-CCAโข(ฮบ)=๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขRealโข(ฮบ)
โ‰ค|๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขRealโข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข0โข(ฮบ)|+|๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข1โข(ฮบ)|+|๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข1โข(ฮบ)|
โ‰ค๐– ๐–ฝ๐—โ„ฌ0,๐–ฎ๐–ณ๐–ฒsUF-CMAโข(ฮบ)+2.๐– ๐–ฝ๐—โ„ฌ1,๐–ฏ๐–ช๐–คIND-gCCAโข(ฮบ)+๐– ๐–ฝ๐—โ„ฌ2,๐–ข๐—ˆ๐—†๐—†๐—‚๐—Hidingโข(ฮบ),

where โ„ฌ0,โ„ฌ1 and โ„ฌ2 are PPT algorithms whose running times are identical to those of ๐’œ. This concludes the theorem. โˆŽ

Lemma 4.3

GameReal and Game0 are indistinguishable under the strong unforgeability of the one-time signature scheme ฮ OTS. That is, for any adversary A, there is a PPT algorithm B such that

|๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ขRealโข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข0โข(ฮบ)|โ‰ค๐– ๐–ฝ๐—โ„ฌ,๐–ฎ๐–ณ๐–ฒsUF-CMAโข(ฮบ).

Proof.

GameReal and Game0 are identical if the unsigncrypt queries do not satisfy the event E. Suppose there is an adversary ๐’œ who can distinguish the games with advantage ฯต. We will construct a PPT algorithm โ„ฌ for breaking strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ with probability at least ฯต. Let ๐’žโขโ„‹ be the challenger for the primitive OTS scheme ฮ ๐–ฎ๐–ณ๐–ฒ. ๐’žโขโ„‹ runs (๐—๐—„โˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—)โ†OTS.Gen and gives ๐—๐—„โˆ— to โ„ฌ. Then โ„ฌ runs (๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—)โ†Gen-Encโข(1ฮบ) and gives ๐’ซโข๐’ฆRโˆ— to ๐’œ. Algorithm โ„ฌ also runs ๐’žโข๐’ฆโ†C.Setupโข(1ฮบ) and sends the public commitment key ๐’žโข๐’ฆ to ๐’œ.

Phase 1 query. It consists of the following queries in an adaptive manner:

  1. Signcrypt query. Let (m,๐’ซโข๐’ฆS) be any signcrypt query made by ๐’œ. Then, using the desired private key, โ„ฌ runs the Signcrypt algorithm (as described in Scheme 4.1) and returns the output to ๐’œ.

  2. Unsigncrypt query. Let (๐–ด,๐’ซโข๐’ฆS) be any unsigncrypt query made by ๐’œ, where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข). If the query satisfies the event E, then it produces a forgery ฮดo for the message ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸRโˆ— in ฮ ๐–ฎ๐–ณ๐–ฒ and aborts, else it runs the Unsigncrypt algorithm using the decryption key and returns the output to ๐’œ.

Challenge phase.๐’œ submits two equal length messages (m0,m1) and a challenge senderโ€™s key pair (๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—) to โ„ฌ. Then โ„ฌ picks bโ†U{0,1} and runs

(๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—(mb),ฮดwโˆ—โ†๐’ฎ(๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—,๐’ฎ๐’ฆSโˆ—)โ€ƒandโ€ƒ๐–ขโˆ—โ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—,๐’ซ๐’ฆRโˆ—).

Then it queries for one-time signature to ๐’žโขโ„‹ for the message ฮดwโˆ—โˆฅ๐–ขโˆ—โˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅโ„๐’ŸRโˆ— and obtains the replied signature ฮดoโˆ—. It returns the challenge signcryption ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—:=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—),๐–ขโˆ—) to ๐’œ.

Phase 2 query. Same as phase 1.

Guess.๐’œ sends a guess bโ€ฒ to โ„ฌ. (โ„ฌ does nothing with bโ€ฒ.)

Analysis. Both games are identical unless the event E occurs. By the natural restriction of the dM-IND-iCCA model, we have ๐–ดโˆ—โ‰ ๐–ด. The event E implies ๐—๐—„โˆ—=๐—๐—„. So, altogether we have

ฮดoโˆ—โขโˆฅฮดwโˆ—โˆฅโข๐–ขโˆ—โขโˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅโขโ„โข๐’ŸRโˆ—โ‰ ฮดoโขโˆฅฮดwโˆฅโข๐–ขโขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโขโ„โข๐’ŸRโˆ—.

Therefore, ฮดo is a valid forgery for the message ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโ„๐’ŸRโˆ—. โˆŽ

Lemma 4.4

Game0 and Game1 are indistinguishable under IND-gCCA security of the primitive encryption scheme ฮ PKE. That is, for any adversary A, there is a PPT algorithm B such that

12โข|๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข1โข(ฮบ)|โ‰ค๐– ๐–ฝ๐—โ„ฌ,๐–ฏ๐–ช๐–คIND-gCCAโข(ฮบ).

Proof.

Similarly to above, we will construct a PPT algorithm โ„ฌ for breaking the IND-gCCA security of ฮ ๐–ฏ๐–ช๐–ค with advantage at least ฯต. Let ๐’žโขโ„‹ be the challenger for the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค. ๐’žโขโ„‹ runs (๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—)โ†Gen-Encโข(1ฮบ) and gives ๐’ซโข๐’ฆRโˆ— to โ„ฌ. Then โ„ฌ runs ๐’žโข๐’ฆโ†C.Setupโข(1ฮบ) and sends (๐’žโข๐’ฆ,๐’ซโข๐’ฆRโˆ—) to ๐’œ.

Phase 1 query. It consists of the following queries:

  1. Signcrypt query. Let (m,๐’ซโข๐’ฆS) be any signcrypt query made by ๐’œ. Then, using the desired private key, โ„ฌ runs the Signcrypt algorithm and returns the output to ๐’œ.

  2. Unsigncrypt query. Let (๐–ด,๐’ซโข๐’ฆS) be any unsigncrypt query made by ๐’œ, where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข). Algorithm โ„ฌ makes a decrypt query C to ๐’žโขโ„‹ and gets the reply. Then โ„ฌ follows the rest of the Unsigncrypt algorithm and returns the output to ๐’œ.

Challenge phase.๐’œ submits two equal length messages (m0,m1) and a challenge senderโ€™s key pair (๐’ฎโข๐’ฆSโˆ—,๐’ซโข๐’ฆSโˆ—) to โ„ฌ. Then โ„ฌ picks bโ†U{0,1} and runs

(๐—๐—„โˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—)โ†OTS.Gen(1ฮบ),(๐–ผ๐—ˆ๐—†โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—(mb)โ€ƒandโ€ƒฮดwโˆ—โ†๐’ฎ(๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—,๐’ฎ๐’ฆSโˆ—).

It then chooses ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโ†UD and sends the challenge messages (๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโˆฅ๐—๐—„โˆ—) to ๐’žโขโ„‹. The challenger ๐’žโขโ„‹ chooses ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†ฮฒโˆฅ๐—๐—„โˆ—โ†U{๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโˆฅ๐—๐—„โˆ—}, runs ๐–ขโˆ—โ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†ฮฒโˆฅ๐—๐—„โˆ—,๐’ซ๐’ฆRโˆ—) and gives ๐–ขโˆ— to โ„ฌ. Then โ„ฌ runs ฮดoโˆ—โ†OTS.Sign(ฮดwโˆ—โˆฅ๐–ขโˆ—โˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅโ„๐’ŸRโˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—). Then โ„ฌ returns the challenge signcryption ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—:=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—),๐–ขโˆ—) to ๐’œ.

Phase 2 query. It consists of the following queries:

  1. Signcrypt query. Same as phase 1.

  2. Unsigncrypt query. Let (๐–ด,๐’ซโข๐’ฆS) be any unsigncrypt query made by ๐’œ. If the query satisfies E, it returns โŠฅ to ๐’œ, else it proceeds the same way as in phase 1.

Guess.๐’œ sends a guess bโ€ฒ to โ„ฌ. If b=bโ€ฒ, then โ„ฌ replies ฮฒโ€ฒ=0, else ฮฒโ€ฒ=1.

Analysis. We first notice that the only difference between Game0 and Game1 is the construction of challenge signcryption. From the challenge phase it is obvious that the challenge signcryption is perfectly simulated. In fact, if ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†ฮฒ=๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ— (resp. ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†ฮฒ=๐–ฝ๐–พ๐–ผ๐—ˆ๐—†r), the distribution of ๐–ดโˆ— is exactly identical to that of Game0 (resp. Game1). Since the signcrypt queries are answered exactly by running the Signcrypt algorithm, we have to focus only on the answers to the unsigncrypt queries. If E occurred, then in both games, ๐’œ will get โŠฅ as requirement. If E does not occur, then ๐—๐—„โˆ—โ‰ ๐—๐—„ and so โ„›โข(๐–ขโˆ—,๐–ข)=๐–ฅ๐–บ๐—…๐—Œ๐–พ, where R is the decryption-respecting relation for the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค. In this case, โ„ฌ makes a decrypt query on C and ๐’žโขโ„‹ will reply a valid message ๐’Ÿโข(๐–ข) to โ„ฌ. So, a legitimate answer to the unsigncrypt query U will be given to ๐’œ. Therefore, all the answers to the queries and the challenge signcryption are perfectly simulated. The advantage of โ„ฌ in breaking the IND-gCCA security of the primitive encryption scheme ฮ ๐–ฏ๐–ช๐–ค is given by

๐– ๐–ฝ๐—โ„ฌ,๐–ฏ๐–ช๐–คIND-gCCA(ฮบ)=|๐–ฏ๐—‹[ฮฒ=ฮฒโ€ฒ]-12|โ‰ฅ12|๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข0(ฮบ)-๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข1(ฮบ)|.โˆŽ
Lemma 4.5

For any adversary A, there is a PPT algorithm B such that

๐– ๐–ฝ๐—๐’œ,๐–ฒ๐–ข1โข(ฮบ)โ‰ค๐– ๐–ฝ๐—โ„ฌ,๐–ข๐—ˆ๐—†๐—†๐—‚๐—Hidingโข(ฮบ).

Proof.

Similar to the proof Lemma 3.6. โˆŽ

Theorem 4.6

If the primitive signature scheme ฮ PKS is UF-CMA secure and ฮ OTS is a strongly unforgeable OTS scheme, then the proposed signcryption scheme ฮ SC in Scheme 4.1 is dM-sUF-iCMA secure (Definition 2.9).

Proof.

Let ๐’œ be an adversary that can break the strong unforgeability of ฮ ๐–ฒ๐–ข with non-negligible advantage ฯต. Suppose ๐’œ has made ฮฝ signcrypt queries to the signcrypt oracle. Let ๐–ดi=(๐–ผ๐—ˆ๐—†i,ฮดi,๐–ขi) with ฮดi=(ฮดw(i),ฮดo(i),๐—๐—„(i)) be the replied signcryption to the i-th query for (mi,๐’ซโข๐’ฆR(i)) for iโˆˆ[ฮฝ]. Let ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) be the forgery by ๐’œ for the message (mโˆ—,๐’ซโข๐’ฆRโˆ—). We define an event

๐–ฅ๐—ˆ๐—‹๐—€๐–พ๐–ฝ:=๐—๐—„โˆ—โˆ‰{๐—๐—„(i):iโˆˆ[ฮฝ]}.

Then we have

ฯตโ‰คPrโก[๐’œโข Succeeds]:=Prโก[๐’œโข Succeedsโˆง๐–ฅ๐—ˆ๐—‹๐—€๐–พ๐–ฝ]+Prโก[๐’œโข Succeedsโˆงยฌโก(๐–ฅ๐—ˆ๐—‹๐—€๐–พ๐–ฝ)]
โ‡’Prโก[๐’œโข Succeedsโˆง๐–ฅ๐—ˆ๐—‹๐—€๐–พ๐–ฝ]โ‰ฅฯต/2โ€ƒorโ€ƒPrโก[๐’œโข Succeedsโˆงยฌโก(๐–ฅ๐—ˆ๐—‹๐—€๐–พ๐–ฝ)]โ‰ฅฯต/2.

Case Forged. We establish a PPT algorithm โ„ฌ๐–ฏ๐–ช๐–ฒ for forging to the primitive signature scheme ฮ ๐–ฏ๐–ช๐–ฒ with advantage at least ฯต/2. Let ๐’žโขโ„‹ be the challenger for the primitive signature scheme ฮ ๐–ฏ๐–ช๐–ฒ. The challenger ๐’žโขโ„‹ runs (๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—)โ†Gen-Signโข(1ฮบ) and gives ๐’ซโข๐’ฆSโˆ— to โ„ฌ๐–ฏ๐–ช๐–ฒ. Algorithm โ„ฌ๐–ฏ๐–ช๐–ฒ runs ๐’žโข๐’ฆโ†C.Setupโข(1ฮบ) and sends (๐’žโข๐’ฆ,๐’ซโข๐’ฆSโˆ—) to ๐’œ.

Signcrypt query answering. Let (mi,๐’ซโข๐’ฆR(i)) be any signcrypt query to โ„ฌ๐–ฏ๐–ช๐–ฒ by ๐’œ. Algorithm โ„ฌ๐–ฏ๐–ช๐–ฒ executes (๐–ผ๐—ˆ๐—†i,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†i)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mi) and (๐—๐—„(i),๐—Œ๐—‚๐—€๐—‡๐—„(i))โ†OTS.Genโข(1ฮบ). Then โ„ฌ๐–ฏ๐–ช๐–ฒ makes a signature query for ๐–ผ๐—ˆ๐—†iโˆฅ๐—๐—„(i) to ๐’žโขโ„‹ and gets the replied signature ฮดw(i) from ๐’žโขโ„‹. Then โ„ฌ๐–ฏ๐–ช๐–ฒ runs ๐–ขiโ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†iโˆฅ๐—๐—„(i),๐’ซ๐’ฆR(i)), ฮดo(i)โ†OTS.Sign(ฮดw(i)โˆฅ๐–ขiโˆฅ๐–ผ๐—ˆ๐—†iโˆฅโ„๐’ŸR(i),๐—Œ๐—‚๐—€๐—‡๐—„(i)) and sets ๐–ดi:=(๐–ผ๐—ˆ๐—†i,ฮดi,๐–ขi), where ฮดi:=(ฮดw(i),ฮดo(i),๐—๐—„(i)). It returns the signcryption ๐–ดi to ๐’œ.

Unsigncrypt query answering. Let (๐–ด,๐’ซโข๐’ฆR) be any unsigncrypt query made by ๐’œ, where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข). โ„ฌ๐–ฏ๐–ช๐–ฒ runs the Unsigncrypt algorithm using ๐’ฎโข๐’ฆR and returns the output to ๐’œ.

Forgery.๐’œ outputs a tuple (๐–ดโˆ—,๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—), where ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) and ฮดโˆ—=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—). It is required that (๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—) is a valid key pair. Then โ„ฌ๐–ฏ๐–ช๐–ฒ forges the signature ฮดwโˆ— for ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ— to the primitive signature scheme ฮ ๐–ฏ๐–ช๐–ฒ.

Analysis. By the event Forged, for all vk involved in answering signcrypt queries, ๐—๐—„(i)โ‰ ๐—๐—„โˆ—, and so ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ— has not been queried for signature to ๐’žโขโ„‹. Therefore ฮดwโˆ— is a valid forgery for the message ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—.

Case ยฌโก(Forged). Similarly to above, we will develop an algorithm โ„ฌ๐–ฎ๐–ณ๐–ฒ for forging to the primitive strong unforgeable one-time signature scheme ฮ ๐–ฎ๐–ณ๐–ฒ with advantage at least ฯต/2โขฮฝ. Let ๐’žโขโ„‹ be the challenger for the primitive signature scheme ฮ ๐–ฎ๐–ณ๐–ฒ. The challenger ๐’žโขโ„‹ runs (๐—๐—„โˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—)โ†๐–ฆ๐–พ๐—‡โข(1ฮบ) and gives ๐—๐—„โˆ— to โ„ฌ๐–ฎ๐–ณ๐–ฒ. Algorithm โ„ฌ๐–ฎ๐–ณ๐–ฒ runs (๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—)โ†Gen-Signโข(1ฮบ), ๐’žโข๐’ฆโ†C.Setupโข(1ฮบ) and gives (๐’žโข๐’ฆ,๐’ซโข๐’ฆSโˆ—) to ๐’œ. Then it picks jโ†U[ฮฝ] as a guess such that ๐—๐—„โˆ—=๐—๐—„(j).

Signcrypt query answering. Let (m(i),๐’ซโข๐’ฆR(i)) be the i-th signcrypt query to โ„ฌ๐–ฎ๐–ณ๐–ฒ by ๐’œ.

  1. iโ‰ j: โ„ฌ๐–ฎ๐–ณ๐–ฒ executes (๐–ผ๐—ˆ๐—†i,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†i)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—โข(mi), (๐—๐—„(i),๐—Œ๐—‚๐—€๐—‡๐—„(i))โ†OTS.Genโข(1ฮบ). Then it runs ฮดw(i)โ†๐’ฎ(๐–ผ๐—ˆ๐—†iโˆฅ๐—๐—„(i),๐’ฎ๐’ฆSโˆ—), ๐–ขiโ†โ„ฐ(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†iโˆฅ๐—๐—„(i),๐’ซ๐’ฆR(i)) and ฮดo(i)โ†OTS.Sign(ฮดw(i)โˆฅ๐–ขiโˆฅ๐–ผ๐—ˆ๐—†iโˆฅโ„๐’ŸR(i),๐—Œ๐—‚๐—€๐—‡๐—„(i)). It sets ฮดi:=(ฮดw(i),ฮดo(i),๐—๐—„(i)) and returns the signcryption ๐–ดi:=(๐–ผ๐—ˆ๐—†i,ฮดi,๐–ขi) to ๐’œ.

  2. i=j: Same as above, except โ„ฌ๐–ฎ๐–ณ๐–ฒ does not execute OTS.Genโข(1ฮบ) but it sets ๐—๐—„(j):=๐—๐—„โˆ— and it makes a one-time signature query to ๐’žโขโ„‹ for the message ฮดw(j)โˆฅ๐–ขjโˆฅ๐–ผ๐—ˆ๐—†jโˆฅโ„๐’ŸR(j) and gets the replied signature ฮดo(j).

Unsigncrypt query answering. Same as above.

Forgery.๐’œ outputs a tuple (๐–ดโˆ—,๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—), where ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) and ฮดโˆ—:=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—). It is required that (๐’ซโข๐’ฆRโˆ—,๐’ฎโข๐’ฆRโˆ—) is a valid key pair. Then โ„ฌ๐–ฎ๐–ณ๐–ฒ forges the signature ฮดoโˆ— for ฮดwโˆ—โˆฅ๐–ขโˆ—โˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅโ„๐’ŸRโˆ— to the primitive one-time signature scheme ฮ ๐–ฎ๐–ณ๐–ฒ.

Analysis. With probability 1/ฮฝ, โ„ฌ๐–ฎ๐–ณ๐–ฒ correctly guesses j such that the event Forged happens. Now, we only have to show that

ฮดoโˆ—โขโˆฅฮดwโˆ—โˆฅโข๐–ขโˆ—โขโˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅโขโ„โข๐’ŸRโˆ—โ‰ ฮดo(j)โขโˆฅฮดw(j)โˆฅโข๐–ขjโขโˆฅ๐–ผ๐—ˆ๐—†jโˆฅโขโ„โข๐’ŸR(j).

To obtain a contradiction, suppose that equality holds. Then ฮดoโˆ—=ฮดo(j), ฮดwโˆ—=ฮดw(j), ๐–ขโˆ—=๐–ขj, ๐–ผ๐—ˆ๐—†โˆ—=๐–ผ๐—ˆ๐—†j and โ„โข๐’ŸRโˆ—=โ„โข๐’ŸR(j). Since ๐–ขโˆ—=๐–ขj, we have ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—โˆฅ๐—๐—„โˆ—=๐–ฝ๐–พ๐–ผ๐—ˆ๐—†jโˆฅ๐—๐—„(j). Using ๐–ผ๐—ˆ๐—†โˆ—=๐–ผ๐—ˆ๐—†j and ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โˆ—=๐–ฝ๐–พ๐–ผ๐—ˆ๐—†j, we have mโˆ—=mj. Altogether we have (๐–ดโˆ—,mโˆ—,๐’ซโข๐’ฆRโˆ—)=(๐–ดj,mj,๐’ซโข๐’ฆR(j)) which is a contradiction to the definition of strong existential unforgeability of signcryption scheme ฮ ๐–ฒ๐–ข. โˆŽ

4.2 Other paradigms

Similar to ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ, we extend the basic paradigms โ„ฐโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐ to โ„ฐโขtโข๐’ฎโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ, respectively, to assure the stronger security. We also provide a new paradigm, namely โ„ฐ&๐’ฎโขtโข๐’ฎ, which is comparatively efficient than the ๐’žโขtโขโ„ฐ&๐’ฎ approach. The design principle of these paradigms is similar to that of ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ. The paradigms are briefly described in Table 1. For brevity, we omit the keys ๐’ซโข๐’ฆS, ๐’ฎโข๐’ฆS, ๐’ซโข๐’ฆR, ๐’ฎโข๐’ฆR, vk and signk from the algorithms ๐’ฑ, ๐’ฎ, โ„ฐ, ๐’Ÿ, OTS.Ver and OTS.Sign, respectively. Demonstrated in Table 1 are only two algorithms, Signcrypt and Unsigncrypt; the others are as in Scheme 4.1. The security statements are given as follows.

Theorem 4.7

If ฮ PKS is UF-CMA secure and ฮ OTS is sUF-CMA secure, then the proposed signcryptions ฮ SC given in Table 1 are dM-sUF-iCMA secure (Definition 2.9).

Theorem 4.8

If ฮ PKE is IND-gCCA secure and ฮ OTS is sUF-CMA secure, then the proposed signcryptions ฮ SC given in Table 1 are dM-IND-iCCA secure (Definition 2.8).

Proof sketch for other paradigms. The proof strategy of the other three paradigms in Table 1 is similar to that of ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ, even simpler than ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ as the other paradigms do not involve the commitment scheme. Therefore, we skip the proofs of the above theorems; we rather sketch the proofs of confidentiality and unforgeability:

Table 1

A brief description of signcryptions in other paradigms.

ParadigmSigncryptUnsigncrypt
โ„ฐ&๐’ฎโขtโข๐’ฎ((๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„)โ†OTS.Genโข(1ฮบ);ฮดwโ†๐’ฎ(๐—๐—„);โˆฅ๐–ขโ†โ„ฐ(mโˆฅ๐—๐—„);ฮดoโ†OTS.Signโข(ฮดwโขโˆฅ๐–ขโˆฅโขโ„โข๐’ŸR);๐–ด:=(ฮด:=(ฮดw,ฮดo,๐—๐—„),๐–ข))(If (OTS.Ver(ฮดwโˆฅ๐–ขโˆฅโ„๐’ŸR,ฮดo)=1;โˆฅ๐’ฑ(๐—๐—„,ฮดw)=1;โˆฅmโˆฅ๐—๐—„โ€ฒโ†๐’Ÿ(๐–ข);๐—๐—„=๐—๐—„โ€ฒ)it returns โขmelse โŠฅ)
โ„ฐโขtโข๐’ฎโขtโข๐’ฎ((๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„)โ†OTS.Genโข(1ฮบ);๐–ขโ†โ„ฐ(mโˆฅ๐—๐—„);ฮดwโ†๐’ฎ(๐–ขโˆฅ๐—๐—„);ฮดoโ†OTS.Signโข(ฮดwโขโˆฅ๐–ขโˆฅโขโ„โข๐’ŸR);๐–ด:=(ฮด:=(ฮดw,ฮดo,๐—๐—„),๐–ข))(If (OTS.Ver(ฮดwโˆฅ๐–ขโˆฅโ„๐’ŸR,ฮดo)=1;โˆฅ๐’ฑ(๐–ขโˆฅ๐—๐—„,ฮดw)=1;โˆฅmโˆฅ๐—๐—„โ€ฒโ†๐’Ÿ(๐–ข);๐—๐—„=๐—๐—„โ€ฒ)it returns โขmelse โŠฅ)
๐’ฎโขtโขโ„ฐโขtโข๐’ฎ((๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„)โ†OTS.Genโข(1ฮบ);ฮดwโ†๐’ฎ(mโˆฅ๐—๐—„);๐–ขโ†โ„ฐโข(ฮดwโขโˆฅmโˆฅโข๐—๐—„);ฮดoโ†OTS.Sign(๐–ขโˆฅโ„๐’ŸR);๐–ด:=(ฮดo,๐—๐—„,๐–ข))(If (OTS.Ver(๐–ขโˆฅโ„๐’ŸR,ฮดo)=1;โˆฅฮดwโขโˆฅmโˆฅโข๐—๐—„โ€ฒโ†๐’Ÿโข(๐–ข);๐’ฑ(mโˆฅ๐—๐—„,ฮดw)=1;๐—๐—„=๐—๐—„โ€ฒ)it returns โขmelse โŠฅ)

Confidentiality. Let ๐’žโขโ„‹ be the challenger for the primitive scheme ฮ ๐–ฏ๐–ช๐–ค. Let ๐’œ be an adversary who can break the confidentiality of ฮ ๐–ฒ๐–ข in the dM-IND-iCCA model. Then using the power of ๐’œ, we establish a PPT simulator โ„ฌ for breaking the IND-gCCA security of ฮ ๐–ฏ๐–ช๐–ค. Let (๐—๐—„โˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—) be the key-pair for the OTS used to construct the challenge signcryption for ฮ ๐–ฒ๐–ข. In the challenge phase, ๐’œ sends challenge messages m0,m1 and a valid pair (๐’ซโข๐’ฆSโˆ—,๐’ฎโข๐’ฆSโˆ—) to โ„ฌ. For the paradigms โ„ฐ&๐’ฎโขtโข๐’ฎ and โ„ฐโขtโข๐’ฎโขtโข๐’ฎ, โ„ฌ gives two challenge messages m0โˆฅ๐—๐—„โˆ—,m1โˆฅ๐—๐—„โˆ— to ๐’žโขโ„‹. For the ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ paradigm, โ„ฌ computes ฮดw(i):=๐’ฎ(miโˆฅ๐—๐—„โˆ—) for i=0,1 and sends the challenge messages ฮดw(0)โขโˆฅm0โˆฅโข๐—๐—„โˆ—,ฮดw(1)โขโˆฅm1โˆฅโข๐—๐—„โˆ— to ๐’žโขโ„‹. Let ๐–ขโˆ— be the reply from ๐’žโขโ„‹. Then โ„ฌ follows the rest of the Signcrypt algorithm to compute the challenge signcryption ๐–ดโˆ—. In the simulation, โ„ฌ has to answer the various queries of ๐’œ. The signcrypt queries are answered by the corresponding signing key ๐’ฎโข๐’ฆS. So, the major task is to answer the unsigncrypt queries of ๐’œ as โ„ฌ does not know the key ๐’ฎโข๐’ฆRโˆ—. Let (๐–ด:=(.,๐—๐—„,๐–ข),๐’ซ๐’ฆS) be any unsigncrypt query. If ๐—๐—„โˆ—=๐—๐—„, โ„ฌ aborts. In this case, โ„ฌ forges to the OTS scheme ฮ ๐–ฎ๐–ณ๐–ฒ. Else it verifies ฮดo and ฮดw (provided the message is available to โ„ฌ to run ๐’ฑ) and makes a decrypt query for C to ๐’žโขโ„‹. Since ๐—๐—„โˆ—โ‰ ๐—๐—„, we have โ„›โข(๐–ขโˆ—,๐–ข)=๐–ฅ๐–บ๐—…๐—Œ๐–พ and ๐’žโขโ„‹ returns a valid answer ๐’Ÿโข(C) to โ„ฌ. Then โ„ฌ verifies ฮดw if it is left and sends the message ๐’Ÿโข(C) to ๐’œ. Whenever ๐’œ sends a guess bโ€ฒ to โ„ฌ, then โ„ฌ forwards the same guess bโ€ฒ to ๐’žโขโ„‹.

Unforgeability. Let ๐’œ be an adversary for breaking the strong unforgeability of ฮ ๐–ฒ๐–ข in the dM-sUF-iCMA model. Then using the power of ๐’œ, we establish an PPT algorithm โ„ฌ for forging either to ฮ ๐–ฏ๐–ช๐–ฒ or ฮ ๐–ฎ๐–ณ๐–ฒ. Suppose, ๐’œ will forge ๐–ดโˆ—:=(.,๐—๐—„โˆ—,๐–ขโˆ—) for (๐’ซโข๐’ฆRโˆ—,๐’ซโข๐’ฆSโˆ—) to ฮ ๐–ฒ๐–ข in the dM-sUF-iCMA model. Similarly to above, โ„ฌ has to answer the various signcrypt and unsigncrypt queries. Since the receiverโ€™s key ๐’ฎโข๐’ฆR is known to โ„ฌ, it can answer the unsigncrypt queries. Let (m,๐’ซโข๐’ฆR) be any signcrypt query made by ๐’œ. Let ๐’žโขโ„‹ be the challenger of ฮ ๐–ฏ๐–ช๐–ฒ. Then โ„ฌ runs (๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„)โ†OTS.Genโข(1ฮบ) and makes the signature queries to ๐’žโขโ„‹ for the messages vk, ๐–ขโˆฅ๐—๐—„ and mโˆฅ๐—๐—„ for the paradigms โ„ฐ&๐’ฎโขtโข๐’ฎ, โ„ฐโขtโข๐’ฎโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ, respectively. Let ฮดw be the replied signature from ๐’žโขโ„‹. Then โ„ฌ follows the rest of the Signcrypt algorithm to answer the signcryption U to ๐’œ. We define an event Forged to be ๐—๐—„โˆ—โ‰ ๐—๐—„ for all vk involved in the replied signcryption (as defined for the ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ paradigm). At the end stage of the unforgeability game, ๐’œ forges ๐–ดโˆ—:=(.,๐—๐—„โˆ—,๐–ขโˆ—) to ฮ ๐–ฒ๐–ข for (๐’ซโข๐’ฆRโˆ—,๐’ซโข๐’ฆSโˆ—). If Forged happened, i.e., ๐—๐—„โˆ—โ‰ ๐—๐—„, then โ„ฌ forges ฮดwโˆ— to ฮ ๐–ฏ๐–ช๐–ฒ for the new messages ๐—๐—„โˆ—, ๐–ขโˆ—โˆฅ๐—๐—„โˆ— and mโˆ—โˆฅ๐—๐—„โˆ— for the paradigms โ„ฐ&๐’ฎโขtโข๐’ฎ, โ„ฐโขtโข๐’ฎโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ, respectively. If Forged does not occur, then โ„ฌ forges ฮดoโˆ— to ฮ ๐–ฎ๐–ณ๐–ฒ as shown for the ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ paradigm.

4.3 Performance and features

Table 2 shows the comparison of efficiency and other features of the various paradigms in details. The efficiency is measured in two aspects, viz., (1) execution time and (2) signcryption bandwidth. In the former aspect, the term โ€œparallelโ€ means that the two basic subroutines ๐’ฎ (resp. ๐’ฑ) and โ„ฐ (resp. ๐’Ÿ) run in parallel in the main routine Signcrypt (resp. Unsigncrypt). In contrast, the term โ€œsequentialโ€ indicates that the aforementioned subroutines run sequentially in an order described by the corresponding paradigm. As a natural choice, the paradigms having parallel execution seem to be faster as compared to the sequential approach. In the latter aspect, the signcryption bandwidth means the number of group elements involved in the final signcryption. As we can see, the paradigm ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ is less bandwidth efficient than the other paradigms. An important feature, namely the non-repudiation (publicly verifiability), means Bob can convince a third party without revealing his secret key that the claimed signcryption actually was sent by Alice. We remark that ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ has non-repudiation, whereas the paradigm ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ has this feature if the primitive commitment scheme has the binding property.

Table 2

The comparison of performance and features of different paradigms.

Features๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎโ„ฐ&๐’ฎโขtโข๐’ฎโ„ฐโขtโข๐’ฎโขtโข๐’ฎ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ
Signcryptparallelparallelsequentialsequential
Unsigncryptparallelparallelparallelsequential
Size(๐–ผ๐—ˆ๐—†,ฮดw,ฮดo,๐—๐—„,๐–ข)(ฮดw,ฮดo,๐—๐—„,๐–ข)(ฮดw,ฮดo,๐—๐—„,๐–ข)(ฮดo,๐—๐—„,๐–ข)
Non-Repudiationโœ“XXโœ“
ConfidentialitydM-IND-iCCAdM-IND-iCCAdM-IND-iCCAdM-IND-iCCA
UnforgeabilitydM-sUF-iCMAdM-sUF-iCMAdM-sUF-iCMAdM-sUF-iCMA
Requirements to
achieve confidentiality
and unforgeability(ฮ ๐–ฎ๐–ณ๐–ฒ:sUF-CMAฮ ๐–ฏ๐–ช๐–ฒ:UF-CMAฮ ๐–ฏ๐–ช๐–ค:IND-gCCAฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐—:Hiding)(ฮ ๐–ฎ๐–ณ๐–ฒ:sUF-CMAฮ ๐–ฏ๐–ช๐–ฒ:UF-CMAฮ ๐–ฏ๐–ช๐–ค:IND-gCCA)(ฮ ๐–ฎ๐–ณ๐–ฒ:sUF-CMAฮ ๐–ฏ๐–ช๐–ฒ:UF-CMAฮ ๐–ฏ๐–ช๐–ค:IND-gCCA)(ฮ ๐–ฎ๐–ณ๐–ฒ:sUF-CMAฮ ๐–ฏ๐–ช๐–ฒ:UF-CMAฮ ๐–ฏ๐–ช๐–ค:IND-gCCA)

5 Generic constructions of attribute-based signcryption

We present generic constructions of signcryption ฮ ๐– ๐–ก๐–ฒ๐–ข:=(๐–ฒ๐–พ๐—๐—Ž๐—‰,๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡,๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—,๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—) from the primitive schemes ฮ ๐– ๐–ก๐–ฒ and ฮ ๐– ๐–ก๐–ค. If we want to setup a signcryption to support the system parameters (universes), ๐’‹s for signing and ๐’‹e for decrypting, then we hire our primitive schemes ฮ ๐– ๐–ก๐–ฒ and ฮ ๐– ๐–ก๐–ค to support ๐’‹sโ€ฒ and ๐’‹eโ€ฒ, respectively. We remark that the key space ๐’ณ and the associated data space ๐’ด are defined over the system parameter ๐’‹, i.e., if ๐’‹ varies, then ๐’ณ and ๐’ด also vary. Throughout this paper, the objects subscripted by s (resp. e) are related to sender (resp. receiver). Considered here are two frameworks, viz., combined-framework and independent-framework. In the combined-framework the setup (resp. KeyGen) of ABSC is identical with the setup of ABE and ABS with common input. Let AB.Setup and AB.KeyGen denote the identical setup algorithm and identical KeyGen algorithms, respectively, of ABE and ABS. For the combined framework, key index x belongs to key space ๐’ณ, the associated data indices ys and ye are from the same associated data index space ๐’ด, where ๐’ณ and ๐’ด are defined over the common system parameter ๐’‹. For the independent-framework, the setup (resp. KeyGen) of ABS and ABE are not identical. Therefore, we consider the key ๐’ฎโข๐’ฆx consisting of two parts: ๐’ฎโข๐’ฆxs and ๐’ฎโข๐’ฆxe, where xsโˆˆ๐’ณs for signing and xeโˆˆ๐’ณe for decrypt. Similarly the data indices involved in signcrypt and unsigncrypt are taken from different data spaces. i.e., ysโˆˆ๐’ดs and yeโˆˆ๐’ดe.

Let ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— and ฮ ๐–ฎ๐–ณ๐–ฒ be the other two supportive primitives, respectively the commitment scheme and one-time signature scheme, with length of the verification key being (n-1), i.e., ๐—๐—„โˆˆ{0,1}n-1. Throughout this section, we use the notations ๐—๐—„e:=1โˆฅ๐—๐—„ and ๐—๐—„s:=0โˆฅ๐—๐—„. We only show the constructions in the ๐’žโขtโขโ„ฐ&๐’ฎโขtโข๐’ฎ paradigm. The ABSC schemes for the other paradigms, โ„ฐ&๐’ฎโขtโข๐’ฎ, โ„ฐโขtโข๐’ฎโขtโข๐’ฎ and ๐’ฎโขtโขโ„ฐโขtโข๐’ฎ, can be constructed similarly. We show the confidentiality and unforgeability of the proposed constructions in adaptive-predicates models (Definitions 2.16 and 2.22). Similarly, the confidentiality of the constructions can be proven in the selective-predicate model (Definitions 2.17) using selective-predicate security of the underlying ABE.

5.1 Delegation and verifiability

Definition 5.1

Definition 5.1 (Delegation and re-randomization for ABE (resp. ABS))

Let โ‰ป be a partial order on ๐’ณ. An ABE (resp. ABS) scheme is said to have the delegation property with respect to โ‰ป if there is a PPT algorithm Delegate such that for all xโ‰ปx~โˆˆ๐’ณ, for all ๐’ซโข๐’ซ, โ„ณโข๐’ฎโข๐’ฆ, K, Kx with ๐–ฏ๐—‹[๐–ฒ๐–พ๐—๐—Ž๐—‰โ†’(๐’ซ๐’ซ,โ„ณ๐’ฎ๐’ฆ)]>0 and ๐–ฏ๐—‹[๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡(๐’ซ๐’ซ,โ„ณ๐’ฎ๐’ฆ,x)=Kx]>0 we have

(5.1)๐–ฏ๐—‹[๐–ฃ๐–พ๐—…๐–พ๐—€๐–บ๐—๐–พ(๐’ซ๐’ซ,Kx,x,x~)=K]=๐–ฏ๐—‹[๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡(๐’ซ๐’ซ,โ„ณ๐’ฎ๐’ฆ,x~)=K].

Moreover, it is said to have the re-randomization property if for all xโˆˆ๐’ณ, xโ‰ปx.

From the binary relation โˆผ for a predicate encryption, we can always define a natural partial order. In fact, xโ‰ปx~ for x,x~โˆˆ๐’ณ (i.e., x has more access than x~) if x~โˆผy implies xโˆผy for all yโˆˆ๐’ด.

Definition 5.2

Definition 5.2 (Verifiability [31, 45])

An attribute-based encryption is said to have verifiability if there is a Verify algorithm such that for all ciphertexts C (possibly ill-format) with the public associated index y, and all x,x~ with xโˆผy,x~โˆผy we have

๐–ต๐–พ๐—‹๐—‚๐–ฟ๐—’โข(๐’ซโข๐’ซ,๐–ข,x,x~)=1โ‡’๐–ฃ๐–พ๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ข,๐’ฎโข๐’ฆx)=๐–ฃ๐–พ๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,๐–ข,๐’ฎโข๐’ฆx~)

and it is a weak format-verifier, i.e., it returns 1 for all correctly-format ciphertexts.[7]

Roughly speaking, it verifies that a ciphertext is correctly-format, or if it is ill-format, then it can be decrypted to the same message under two keys with two different indices both related to the associated index.

5.2 Construction based on delegation feature

In this section, we propose a generic construction of attribute-based signcryption ฮ ๐– ๐–ก๐–ฒ๐–ข from attribute-based signature ฮ ๐– ๐–ก๐–ฒ and attribute-based encryption ฮ ๐– ๐–ก๐–ค based on restricted delegation (Definition 5.4). The construction assumes UF-NMA security of ฮ ๐– ๐–ก๐–ฒ and IND-CPA security of ฮ ๐– ๐–ก๐–ค, and guarantees sUF-CMA and IND-CCA security. The other supportive primitives, ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— and ฮ ๐–ฎ๐–ณ๐–ฒ, will have the hiding property and strong unforgeability, respectively. In addition, we assume that the primitives ฮ ๐– ๐–ก๐–ฒ and ฮ ๐– ๐–ก๐–ค must have restricted delegation with respect to the delegation-friendly index transformer [31] defined below.

Definition 5.3

A triple of maps ๐’ฏ1:๐’ณโ†’๐’ณโ€ฒ, ๐’ฏ2:๐’ณร—{0,1}nโ†’๐’ณโ€ฒ and ๐’ฏ3:๐’ดร—{0,1}nโ†’๐’ดโ€ฒ is called delegation-friendly index-transformer from (โˆผ,๐’ณ,๐’ด) to (โˆผโ€ฒ,๐’ณโ€ฒ,๐’ดโ€ฒ) if the following conditions are satisfied for all xโˆˆ๐’ณ, ๐—๐—„โ‰ ๐—๐—„โ€ฒโˆˆ{0,1}n and yโˆˆ๐’ด:

  1. xโˆผyโ‡”x๐—๐—„โˆผโ€ฒy๐—๐—„,

  2. xโ‰yโ‡’xโ€ฒโ‰โ€ฒy๐—๐—„,

  3. x๐—๐—„โ‰โ€ฒy๐—๐—„โ€ฒ,

where we simply denote ๐’ฏ1โข(x), ๐’ฏ2โข(x,๐—๐—„) and ๐’ฏ3โข(y,๐—๐—„) by xโ€ฒ, x๐—๐—„ and y๐—๐—„, respectively. The items (1), (2), (3) defined above will be referred to as conditions (1), (2), (3) throughout throughout Section 5.2.

Definition 5.4

Definition 5.4 (Restricted delegation for ABE (resp. ABS) [31])

An algorithm Delegate is said to be a restricted-delegatable algorithm for an ABE (resp. ABS) with respect to an index-transformer (๐’ฏ1,๐’ฏ2,๐’ฏ3) if for all xโˆˆ๐’ณ, ๐—๐—„โˆˆ{0,1}n, equation (5.1) holds for the partial order of the form x๐—๐—„โ‰ปx๐—๐—„ and xโ€ฒโ‰ปx๐—๐—„.

If the delegation-friendly index-transformer (๐’ฏ1,๐’ฏ2,๐’ฏ3) is applied to ABS (resp. ABE), we use the notation (๐’ฏ1s,๐’ฏ2s,๐’ฏ3s) (resp. (๐’ฏ1e,๐’ฏ2e,๐’ฏ3e)).

A generic construction based on restricted delegation. Let (๐’ฏ1s,๐’ฏ2s,๐’ฏ3s) and (๐’ฏ1e,๐’ฏ2e,๐’ฏ3e) be the valid index-transformers for ABS and ABE, respectively, where domain and range will be understood from the context. For the combined-framework, these transformers are identical. If the notation (๐’ฏ1,๐’ฏ2,๐’ฏ3) is found further in this paper, it will mean index-transformations for both ABS and ABE. In Scheme 5.5, both constructions are given, in combined-framework and independent-framework. In most of the descriptions of the algorithms, we omit public parameters and master secret key as these are understood from the context.

Scheme 5.5

Scheme 5.5 (Generic construction based on restricted delegation)

  1. Independent. Setup(1ฮบ,j): It returns (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ), where

    ๐’‹:=(๐’‹s,๐’‹e),
    ๐’ซ๐’ซ:=(๐’‹โ€ฒ:=(๐’‹sโ€ฒ,๐’‹eโ€ฒ),๐’ž๐’ฆโ†C.Setup(1ฮบ),๐’œโ„ฌ๐’ฎ.๐’ซ๐’ซ,๐’œโ„ฌโ„ฐ.๐’ซ๐’ซ),
    โ„ณ๐’ฎ๐’ฆ:=(๐’œโ„ฌ๐’ฎ.โ„ณ๐’ฎ๐’ฆ,๐’œโ„ฌโ„ฐ.โ„ณ๐’ฎ๐’ฆ),
    (๐’œโ„ฌ๐’ฎ.๐’ซ๐’ซ,๐’œโ„ฌ๐’ฎ.โ„ณ๐’ฎ๐’ฆ)โ†ABS.Setup(1ฮบ,๐’‹sโ€ฒ),
    (๐’œโ„ฌโ„ฐ.๐’ซ๐’ซ,๐’œโ„ฌโ„ฐ.โ„ณ๐’ฎ๐’ฆ)โ†ABE.Setup(1ฮบ,๐’‹eโ€ฒ).

    We note that the system-indices, ๐’‹sโ€ฒ and ๐’‹eโ€ฒ define the index spaces (๐’ณsโ€ฒ,๐’ดsโ€ฒ) for hired ABS and (๐’ณeโ€ฒ,๐’ดeโ€ฒ) for hired ABE, respectively. Actually there is a system-index transformation (referred to as ๐’ฏ0 in Section 5.4) which takes care of moving from ๐’‹ to ๐’‹โ€ฒ.

  2. Combined. Setup(1ฮบ,j): It returns (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ), where

    ๐’ซ๐’ซ:=(๐’‹โ€ฒ,๐’ž๐’ฆโ†C.Setup(1ฮบ),๐’œโ„ฌ.๐’ซ๐’ซ),
    โ„ณโข๐’ฎโข๐’ฆ:=๐’œโขโ„ฌ.โ„ณโข๐’ฎโข๐’ฆ,
    (๐’œโ„ฌ.๐’ซ๐’ซ,๐’œโ„ฌ.โ„ณ๐’ฎ๐’ฆ)โ†AB.Setup(1ฮบ,๐’‹โ€ฒ).

  3. Independent. KeyGen(x): It returns ๐’ฎโข๐’ฆx, where

    x:=(xs,xe),
    ๐’ฎ๐’ฆx:=(๐’ฎ๐’ฆxs:=๐’ฎ๐’ฆxsโ€ฒโ€ฒ,๐’ฎ๐’ฆxe:=๐’ฎ๐’ฆxeโ€ฒโ€ฒ),
    ๐’ฎโข๐’ฆxsโ€ฒโ€ฒโ†ABS.KeyGenโข(xsโ€ฒ),
    ๐’ฎโข๐’ฆxeโ€ฒโ€ฒโ†ABE.KeyGenโข(xeโ€ฒ).

  4. Combined. KeyGen(x): It returns ๐’ฎโข๐’ฆx, where

    x=xs=xe,
    ๐’ฎโข๐’ฆx:=๐’ฎโข๐’ฆxโ€ฒโ€ฒ,
    ๐’ฎโข๐’ฆxโ€ฒโ€ฒโ†AB.KeyGenโข(xโ€ฒ).

  5. ๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(m,๐’ฎโข๐’ฆxs,ys,ye):=((๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)โ†๐–ข๐—ˆ๐—†๐—†๐—‚๐—(m);โˆฅ(๐—๐—„,๐—Œ๐—‚๐—€๐—‡๐—„)โ†OTS.Gen(1ฮบ);Kโ†๐–ฃ๐–พ๐—…๐–พ๐—€๐–บ๐—๐–พโข(๐’ฎโข๐’ฆxsโ€ฒโ€ฒ,xsโ€ฒ,x๐—๐—„s)โข where โขx๐—๐—„s:=๐’ฏ2sโข(xs,๐—๐—„s);ฮดwโ†ABS.Sign(๐–ผ๐—ˆ๐—†,K,y๐—๐—„s);โˆฅ๐–ขโ†ABE.Encrypt(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†,y๐—๐—„e);where โขy๐—๐—„s:=๐’ฏ3sโข(ys,๐—๐—„s)โข and โขy๐—๐—„e:=๐’ฏ3eโข(ye,๐—๐—„e);ฮดoโ†OTS.Sign(ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅys,๐—Œ๐—‚๐—€๐—‡๐—„);it returns ๐–ด:=(๐–ผ๐—ˆ๐—†,ฮด:=(ฮดw,ฮดo,๐—๐—„),๐–ข)).

  6. ๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐–ด,๐’ฎโข๐’ฆxe,ys):={๐–ฎ๐—‰๐–พ๐—‡โข(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†)if โข(OTS.Ver(ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅys,ฮดo,๐—๐—„)=1;โˆฅABS.Ver(๐–ผ๐—ˆ๐—†,ฮดw,y๐—๐—„s)=1;โˆฅlet ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†โ†ABE.Decryptโข(๐–ข,K);where โขKโ†๐–ฃ๐–พ๐—…๐–พ๐—€๐–บ๐—๐–พโข(๐’ฎโข๐’ฆxeโ€ฒโ€ฒ,xeโ€ฒ,x๐—๐—„e))โŠฅotherwise.

Correctness. For all (๐’ซโข๐’ซ,โ„ณโข๐’ฎโข๐’ฆ)โ†๐–ฒ๐–พ๐—๐—Ž๐—‰โข(1ฮบ,๐’‹), all x,x~โˆˆ๐’ณ, all ys,yeโˆˆ๐’ด with x~โˆผys, all ๐’ฎโข๐’ฆx:=๐’ฎโข๐’ฆxโ€ฒโ€ฒโ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(xโ€ฒ), all ๐’ฎโข๐’ฆx~:=๐’ฎโข๐’ฆx~โ€ฒโ€ฒโ†๐–ช๐–พ๐—’๐–ฆ๐–พ๐—‡โข(x~โ€ฒ) and all ๐–ดโ†๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(m,๐’ฎโข๐’ฆx~,ys,ye), we have

๐–ด๐—‡๐—Œ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—(๐–ด,๐’ฎ๐’ฆx,ys)=๐–ฎ๐—‰๐–พ๐—‡(๐–ผ๐—ˆ๐—†,ABE.Decrypt(๐’œโ„ฌโ„ฐ.๐’ซ๐’ซ,๐–ข,๐’ฎ๐’ฆx๐—๐—„eโ€ฒ))
=๐–ฎ๐—‰๐–พ๐—‡(๐–ผ๐—ˆ๐—†,๐–ฝ๐–พ๐–ผ๐—ˆ๐—†(resp.โŠฅ))โ€ƒif xโˆผye(resp. xโ‰ye)
=m(resp.โŠฅ).

The first equality is valid by correctness of ABS, OTS and definition, the second equality by correctness of ABE and condition (1), and the third equality by correctness of the commitment.

Intuition of our design. If we identify โ„โข๐’ŸR with ye and โ„โข๐’ŸS with ys, then the design of the proposed construction is very similar to that of ฮ ๐–ฒ๐–ข (in Section 4.1). On contrary, we do not need to add ye to the message of OTS as it is given as a part of the ciphertext C. We use the convention (as used in ABS [28, 34]) that the sender sends both the signcryption U and ys to the receiver.

Intuition for vks and vke. In the starting of this section, we have defined that ๐—๐—„s=0โˆฅ๐—๐—„ and ๐—๐—„e=1โˆฅ๐—๐—„, where ๐—๐—„โˆˆ{0,1}n-1 is the verification key for OTS. The intuition for taking ๐—๐—„s and ๐—๐—„e in this form is similar to the padding vk with extra bit 0 or 1 in the construction of CCA-secure HIBE [7]. More precisely, the intuition is the following. In the security proof, the adversary ๐’œ may ask many queries of its own choice as long as the queries are valid in the security model. Let (๐–ด,x,ys) be any unsigncrypt query made by ๐’œ, where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด=(ฮดw,ฮดo,๐—๐—„),๐–ข). A simulator โ„ฌ first makes a key query for x๐—๐—„e to the challenger ๐’žโขโ„‹ for ABS and then answers the unsigncrypt query by the replied key for the index x๐—๐—„e. If ๐—๐—„โˆ— and ysโˆ— are respectively the verification key and signer policy for the forgery ๐–ดโˆ—, for correctness of the unforgeability model of ABS we must require that x๐—๐—„eโ‰โ€ฒy๐—๐—„sโˆ—, where y๐—๐—„sโˆ—:=๐’ฏ3sโข(ysโˆ—,๐—๐—„sโˆ—). As ๐—๐—„eโ‰ ๐—๐—„sโˆ—, the above requirement is guaranteed by condition (3).

For the independent-framework, one can set ๐—๐—„s:=๐—๐—„e:=๐—๐—„ with ๐—๐—„โˆˆ{0,1}n. In this case, โ„ฌ does not require the key query for the x๐—๐—„e to ๐’žโขโ„‹ for ABS as โ„ฌ itself plays the role of PKG for ABE. Since we represent the construction for both frameworks together, we keep the former description of ๐—๐—„s and ๐—๐—„e.

Theorem 5.6

If ฮ ABS is perfectly private, then the proposed signcryption scheme ฮ ABSC in Scheme 5.5 is perfectly private (Definition 2.15).

Proof.

It can be easily verified from the construction given in Scheme 5.5. โˆŽ

Theorem 5.7

Let (T1,T2,T3) be a delegation-friendly index-transformer, ฮ ABE an AP-IND-CPA secure ABE scheme with the restricted delegation, ฮ OTS a strong unforgeable OTS, and ฮ Commit a commitment scheme with the hiding property. Then the proposed signcryption scheme ฮ ABSC in Scheme 5.5 is APs-IND-CCA secure (Definition 2.16).

Proof sketch of Theorem 5.7. Confidentiality of the proposed signcryption scheme ฮ ๐– ๐–ก๐–ฒ๐–ข relies on IND-CPA security of ฮ ๐– ๐–ก๐–ค and strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ. Therefore, ๐’œ can not break the claimed confidentiality of ฮ ๐– ๐–ก๐–ฒ๐–ข even if ๐’œ forges the primitive ABS scheme ฮ ๐– ๐–ก๐–ฒ. Suppose an adversary ๐’œ can break APs-IND-CCA security of the proposed scheme ฮ ๐– ๐–ก๐–ฒ๐–ข. Then we establish a PPT simulator โ„ฌ for breaking either IND-CPA security of ฮ ๐– ๐–ก๐–ค or strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ or the hiding property of ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— with the help of ๐’œ.

Let (๐—๐—„โˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—) be the key pair of ฮ ๐–ฎ๐–ณ๐–ฒ used in the construction of challenge signcryption. The proof consists of the hybrid arguments over the games GameReal, Game0 and Game1. GameReal is the original APs-IND-CCA game of the signcryption scheme. GameReal is modified to Game0, where for unsigncrypt query of the form ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด=(ฮดw,ฮดo,๐—๐—„โˆ—),๐–ข)) the adversary ๐’œ always gets โŠฅ as reply. Game0 is modified to Game1, where the decommitment part in the construction of challenge signcryption is replaced by a random element from the decommitment space. We show that GameReal and Game0 are indistinguishable under the strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ. The strong unforgeability basically ensures that the challenge signcryption can not be modified to another signcryption with the same verification key ๐—๐—„โˆ—.

We prove that Game0 and Game1 are indistinguishable under the IND-CCA security of ฮ ๐– ๐–ก๐–ค. In the proof, a PPT simulator โ„ฌ is established which is responsible to answer the keygen query, signcrypt query and unsigncrypt query made by ๐’œ. Simulator โ„ฌ answers all the queries of ๐’œ with the help of the keygen oracle of ABE as the only resource, which is handled by a challenger ๐’žโขโ„‹ for ฮ ๐– ๐–ก๐–ค. We show that โ„ฌ answers all the queries perfectly without violating the rule of the IND-CPA game of ABE while interacting with ๐’žโขโ„‹.

Finally, we show that ๐’œ has no advantage in Game1 if the primitive commitment scheme ฮ ๐–ข๐—ˆ๐—†๐—†๐—‚๐— has the hiding property.

In the following, we only provide the proof for the combined-framework as there are some issues of distribution or the capability of the simulator โ„ฌ as compared to that of the independent-framework. In the independent-framework, โ„ฌ knows ๐’œโขโ„ฌโข๐’ฎ.โ„ณโข๐’ฎโข๐’ฆ as โ„ฌ itself runs the ABS.Setup algorithm and therefore it can simulate the objects involved in ABS. Here we point out that ๐’œ can not produce a valid signcryption from a given signcryption U even if ๐’œ forges the ABS part of the signcryption U. The reason is the following. For a valid signcryption, all the components are signed using the OTS and the verification key vk is attached to the messages of ABS.Sign and ABE.Encrypt. For the given signcryption U, ๐’œ does not know the signing key signk. Now if ๐’œ produces a new signcryption ๐–ด~ from U by forging the ABS part of U, then either ๐–ด~ is invalid or the OTS is forged. Since we assume the strong unforgeability of the OTS, ๐’œ can not have any advantage of using the weakness of ABS in the confidentiality game.

Proof.

Let ๐–ดโˆ—=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) denote the challenge signcryption for (ysโˆ—,yeโˆ—), where ฮดโˆ—=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—). Let ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข) be any unsigncrypt query with the policies (ys,ye), where ฮด=(ฮดw,ฮดo,๐—๐—„). Let ฮฝ be the number of unsigncrypt queries to the unsigncrypt oracle. We define an event E as

๐–ค:=[(๐—๐—„โˆ—=๐—๐—„)โˆง(ฮดoโˆ—โˆฅฮดwโˆ—โˆฅ๐–ขโˆ—โˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅysโˆ—โ‰ ฮดoโˆฅฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅys)].

We will apply the hybrid arguments over the following games:

  1. GameReal: The original APs-IND-CCA game of the signcryption scheme.

  2. Game0: Same as GameReal, except that on the unsigncrypt query the challenger always returns โŠฅ if E occurs.

  3. Game1: Same as Game0, except for ๐–ขโˆ—โ†ABE.Encryptโข(๐–ฝ๐–พ๐–ผ๐—ˆ๐—†r,yeโˆ—), where ๐–ฝ๐–พ๐–ผ๐—ˆ๐—†rโ†UD and D is the decommitment space.

Using Lemmas 5.8, 5.9 and 5.10, we have the following reduction:

๐– ๐–ฝ๐—๐’œ,ABSCIND-CCAโข(ฮบ)=๐– ๐–ฝ๐—๐’œ,ABSCRealโข(ฮบ)
โ‰ค|๐– ๐–ฝ๐—๐’œ,ABSCRealโข(ฮบ)-๐– ๐–ฝ๐—๐’œ,ABSC0โข(ฮบ)|+|๐– ๐–ฝ๐—๐’œ,ABSC0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,ABSC1โข(ฮบ)|+|๐’œ,ABSCโข1โขฮบ|
โ‰ค๐– ๐–ฝ๐—โ„ฌ0,๐–ฎ๐–ณ๐–ฒsUF-CMAโข(ฮบ)+2.๐– ๐–ฝ๐—โ„ฌ1,ABEIND-CPAโข(ฮบ)+๐– ๐–ฝ๐—โ„ฌ2,๐–ข๐—ˆ๐—†๐—†๐—‚๐—Hidingโข(ฮบ),

where โ„ฌ0,โ„ฌ1 and โ„ฌ2 are PPT algorithms whose running times are the same as that of ๐’œ. This concludes the theorem. โˆŽ

Lemma 5.8

GameReal and Game0 are indistinguishable under the strong unforgeability of the one-time signature scheme ฮ OTS. That is, for any adversary A, there is a PPT algorithm B such that

|๐– ๐–ฝ๐—๐’œ,ABSCRealโข(ฮบ)-๐– ๐–ฝ๐—๐’œ,ABSC0โข(ฮบ)|โ‰ค๐– ๐–ฝ๐—โ„ฌ,๐–ฎ๐–ณ๐–ฒsUF-CMAโข(ฮบ).

Proof.

If an adversary ๐’œ can distinguish the games with advantage ฯต, then we will establish a PPT algorithm โ„ฌ for breaking strong unforgeability of ฮ ๐–ฎ๐–ณ๐–ฒ with probability at least ฯต. Here โ„ฌ plays two roles, the role of an adversary in the sUF-CMA game and the role of a challenger in the APs-IND-CCA game. The security proof consists of the following phases.

๐’žโขโ„‹ runs OTS.Gen to generate (๐—๐—„โˆ—,๐—Œ๐—‚๐—€๐—‡๐—„โˆ—) and then gives ๐—๐—„โˆ— to โ„ฌ. Then โ„ฌ runs the Setup algorithm, keeps โ„ณโข๐’ฎโข๐’ฆ to itself and gives the public parameters ๐’ซโข๐’ซ to ๐’œ.

Phase 1/2 query. It consists of the following queries in an adaptive manner:

  1. KeyGen query. Let x be any key query made by ๐’œ. Since โ„ฌ knows โ„ณโข๐’ฎโข๐’ฆ, it replies ๐’ฎโข๐’ฆx to ๐’œ.

  2. Signcrypt query. Let (m,x,ys,ye) be any signcrypt query made by ๐’œ. Then โ„ฌ constructs a key ๐’ฎโข๐’ฆx using โ„ณโข๐’ฎโข๐’ฆ. Then, using this key, it runs the Signcrypt algorithm (as described in Scheme 5.5) and answers the signcryption U to ๐’œ.

  3. Unsigncrypt query. Let (๐–ด,x,ys), where ๐–ด=(๐–ผ๐—ˆ๐—†,ฮด,๐–ข) is any unsigncrypt query made by ๐’œ. If this query satisfies the event E, โ„ฌ returns ฮดo and aborts. โ„ฌ first constructs ๐’ฎโข๐’ฆx and then, using this key, it runs the Unsigncrypt algorithm (as described in Scheme 5.5) and returns the output to ๐’œ.

Challenge phase.๐’œ submits to โ„ฌ two equal length messages m0,m1, a key index x, a challenge senderโ€™s associated data index ysโˆ— and a challenge receiverโ€™s associated data index yeโˆ—. Then โ„ฌ computes the key ๐’ฎโข๐’ฆxs as it knows โ„ณโข๐’ฎโข๐’ฆ. It picks bโ†U{0,1} and runs ๐–ฒ๐—‚๐—€๐—‡๐–ผ๐—‹๐—’๐—‰๐—โข(๐’ซโข๐’ซ,mb,ysโˆ—,yeโˆ—), where it queries for one-time signature to ๐’žโขโ„‹ for the message ฮดwโˆ—โˆฅ๐–ขโˆ—โˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅysโˆ— and gets the replied signature ฮดoโˆ—. It returns ๐–ดโˆ—:=(๐–ผ๐—ˆ๐—†โˆ—,ฮดโˆ—,๐–ขโˆ—) to ๐’œ, where ฮดโˆ—:=(ฮดwโˆ—,ฮดoโˆ—,๐—๐—„โˆ—).

Guess.๐’œ sends a guess bโ€ฒ to โ„ฌ. (โ„ฌ does nothing with this bโ€ฒ.)

Analysis. Both games are identical except for the event E with probability ฯต. By the event E, we have ฮดoโˆ—โขโˆฅฮดwโˆ—โˆฅโข๐–ขโˆ—โขโˆฅ๐–ผ๐—ˆ๐—†โˆ—โˆฅโขysโˆ—โ‰ ฮดoโขโˆฅฮดwโˆฅโข๐–ขโขโˆฅ๐–ผ๐—ˆ๐—†โˆฅโขys. Therefore, ฮดo is a valid forgery for the message ฮดwโˆฅ๐–ขโˆฅ๐–ผ๐—ˆ๐—†โˆฅys. โˆŽ

Lemma 5.9

Game0 and Game1 are indistinguishable under IND-CPA security of the primitive encryption scheme ฮ ABE. That is, for any adversary A, there is a PPT algorithm B such that

12โข|๐– ๐–ฝ๐—๐’œ,ABSC0โข(ฮบ)-๐– ๐–ฝ๐—๐’œ,ABSC1โข(ฮบ)|โ‰ค๐– ๐–ฝ๐—โ„ฌ,ABEIND-CPAโข(ฮบ).

Proof.

Suppose an adversary ๐’œ breaks the indistinguishability of the games with advantage ฯต. Then we construct a PPT algorithm โ„ฌ for breaking IND-CPA security of ฮ ๐– ๐–ก๐–ค with advantage at least ฯต/2. Let ๐’žโขโ„‹ be the challenger for the primitive encryption scheme ฮ ๐– ๐–ก๐–ค. The main challenging task for โ„ฌ is to answer the signcrypt and unsigncrypt queries of ๐’œ without violating the rules of the CPA game with ๐’žโขโ„‹. We show that โ„ฌ perfectly simulates the answers to all queries made by ๐’œ with the help of the only resource supplied by ๐’žโขโ„‹, i.e., the KeyGen oracle. โ„ฌ runs (๐—๐—„โˆ—,๐—Œ๐—‚๐—€