Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 5, 2016

Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow

  • Monika Neda , Faranak Pahlevani , Leo G. Rebholz EMAIL logo and Jiajia Waters


We present a numerical study of the sensitivity of the grad-div stabilization parameter for mixed finite element discretizations of incompressible flow problems. For incompressible isothermal and non-isothermal Stokes equations and Navier-Stokes equations, we develop the associated sensitivity equations for changes in the grad-div parameter. Finite element schemes are devised for computing solutions to the sensitivity systems, analyzed for stability and accuracy, and finally tested on several benchmark problems. Our results reveal that solutions are most sensitive for small values of the parameter, near obstacles and corners, when the pressure is large, and when the viscosity is small.


The work of the third author was partially supported by NSF grant DMS1112593.


1 M. Anitescu and W. J. Layton, Sensitivities in Large Eddy Simulation and Improved Estimates of Turbulent Flow Functionals, J. Comp. Phys. 178 (2001), 391-426.10.1137/050631161Search in Google Scholar

2 G. Baker, Galerkin Approximations for the Navier-Stokes Equations, Harvard University, 1976.Search in Google Scholar

3 S. Boerm and S. Le Borne, H-LU factorization in preconditioners for augmented Lagrangian and grad-div stabilized saddle point systems, Int.J. Numer. Meth. Fluids 68 (2012), 83-98.10.1002/fld.2495Search in Google Scholar

4 J. Borggaard and J. Burns, A sensitivity equation approach to shape optimization in fluid flows, In: Flow Control, Vol.68 of Proc. of the IMA, Springer-Verlag, 1995.10.1007/978-1-4612-2526-3_3Search in Google Scholar

5 J. Borggaard and J. Burns, A PDE sensitivity equation method for optimal aerodynamic design, J. Comp. Phys. 136 (1997), 366-384.10.1006/jcph.1997.5743Search in Google Scholar

6 J. Borggaard and A. Verma, Solutions to continuous sensitivity equations using Automatic Differentiation, SIAM Sci. Comp. 22 (2001), 39-62.10.1137/S1064827599352136Search in Google Scholar

7 S. Brennerand L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 2008.10.1007/978-0-387-75934-0Search in Google Scholar

8 M. Case, V. Ervin, A. Linke, and L. Rebholz, A connection between Scott-Vogelius elements and grad-div stabilization, SIAM J. Numer. Anal. 49 (2011), 1461-1481.10.1137/100794250Search in Google Scholar

9 L. Franca and T. Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg. 69 (1988), 89-129.10.1016/0045-7825(88)90168-5Search in Google Scholar

10 K. Galvin, A. Linke, L. Rebholz, and N. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comp. Meth. Appl. Mech. Engrg. 237 (2012), 166-176.10.1016/j.cma.2012.05.008Search in Google Scholar

11 R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator splitting methods in nonlinear mechanics, SIAM, Studies in Applied Mathematics, Philadelphia, 1989.10.1137/1.9781611970838Search in Google Scholar

12 A. Godfrey and E. Cliff, Direct calculation of aerodynamic force derivatives: A sensitivity equation approach, Proc. of the 36th AIAA Aerospace Sciences Meeting and Exhibit, 0393 (1998).10.2514/6.1998-393Search in Google Scholar

13 M. Gunzburger, Sensitivities, adjoints and flow optimization, Int.J. Num. Meth. Fluids 31 (1999), 53-78.10.1002/(SICI)1097-0363(19990915)31:1<53::AID-FLD955>3.0.CO;2-ZSearch in Google Scholar

14 F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), 251-265.10.1515/jnum-2012-0013Search in Google Scholar

15 T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization, Int.J. Numer. Meth. Fluids71 (2013), 118-134.10.1002/fld.3654Search in Google Scholar

16 J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for the second order time discretization, SIAM J. Numer. Anal. 2 (1990), 353-38 4.10.1137/0727022Search in Google Scholar

17 R. Ingram, Unconditional convergence of high-order extrapolations of the Crank-Nicolson, finite-element method for the Navier-Stokes equations, Int.J. Numer. Anal. Modeling10 (2013), 257-297.Search in Google Scholar

18 E. Jenkins, V. John, A. Linke, and L. Rebholz, On the parameter choice in grad-div stabilization for the Stokes equations, Adv. Comp. Math. 40 (2014), 491-516.10.1007/s10444-013-9316-1Search in Google Scholar

19 M. Jobelin, C. Lapuerta, J.C. Latche, P. Angot, and B. Piar, A finite element penalty-projection method for incompressible flows, J. Comp. Phys. 217 (2006), 502-518.10.1016/ in Google Scholar

20 V. John, Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder, Int.J. Numer. Meth. Fluids44 (2004), 777-788.10.1002/fld.679Search in Google Scholar

21 W. Layton, An Introduction to the Numerical Analysis of Viscous Incompressible Flows, SIAM, Philadelphia, 2008.10.1137/1.9780898718904Search in Google Scholar

22 W. Layton, C. Manica, M. Neda, M. A. Olshanskii, and L. Rebholz, On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comp. Phys. 228 (2009), 3433-3447.10.1016/ in Google Scholar

23 A. Linke, M. Neilan, L. Rebholz, and N. Wilson, Improving efficiency of coupled schemes for Navier-Stokes equations by a connection to grad-div stabilized projection methods, Submitted (2014).Search in Google Scholar

24 A. Linke, L. Rebholz, and N. Wilson, On the convergence rate of grad-div stabilized Taylor-Hood to Scott-Vogelius solutions for incompressible flow problems, Journal of Mathematical Analysis and Applications381 (2011), 612-626.10.1016/j.jmaa.2011.03.019Search in Google Scholar

25 C. Manica, M. Neda, M. A. Olshanskii, and L. Rebholz, Enabling accuracy of Navier-Stokes-alpha through deconvolution and enhanced stability, M2AN: Math. Modelling Numer. Anal. 45 (2011), 277-308.10.1051/m2an/2010042Search in Google Scholar

26 M. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp. 73 (2004), 1699-1718.10.1090/S0025-5718-03-01629-6Search in Google Scholar

27 M. A. Olshanskii, A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods, Comput. Meth. Appl. Mech. Engrg. 191 (2002), 5515-5536.10.1016/S0045-7825(02)00513-3Search in Google Scholar

28 M. A. Olshanskii, G. Lube, T. Heister, and J. Löwe, Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 198 (2009), 3975-3988.10.1016/j.cma.2009.09.005Search in Google Scholar

29 M.A. Olshanskii and E.E. Tyrtyshnikov, Iterative Methods for Linear Systems: Theory and Applications, SIAM, Philadelphia, 2014.10.1137/1.9781611973464Search in Google Scholar

30 F. Pahlevani, Sensitivity computations of eddy viscosity models with an application in drag computation, Int.J. Numer. Methods Fluids. 52 (2006), 381-392.10.1002/fld.1168Search in Google Scholar

31 J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, Ph.D. thesis, Pennsylvania State University, 1994.Search in Google Scholar

32 P. Sagaut and T. Lê, Some investigations of the sensitivity of large eddy simulation, Tech. Rep., ONERA (1997).10.1007/978-94-011-5624-0_8Search in Google Scholar

33 M. Schäfer and S. Turek, The benchmark problem ‘flow around a cylinder’ flow simulation with high performance computers II, in E.H. Hirschel (Ed.), Notes on Numerical Fluid Mechanics52 (1996), 547-566.10.1007/978-3-322-89849-4_39Search in Google Scholar

34 L. Stanley and D. Stewart, Design sensitivity analysis: Computational issues of sensitivity equation methods, Frontiers in Mathematics, SIAM, Philadelphia, 2002.10.1137/1.9780898717556Search in Google Scholar

35 S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp. 74 (2005), 543-554.10.1090/S0025-5718-04-01711-9Search in Google Scholar

Received: 2015-1-30
Revised: 2015-4-22
Accepted: 2016-4-24
Published Online: 2016-10-5
Published in Print: 2016-10-1

© 2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2023 from
Scroll to top button