Accessible Requires Authentication Published by De Gruyter March 19, 2018

A contraction property of an adaptive divergence-conforming discontinuous Galerkin method for the Stokes problem

Natasha Sharma and Guido Kanschat

Abstract

We prove the contraction property for two successive loops of the adaptive algorithm for the Stokes problem reducing the error of the velocity. The problem is discretized by a divergence-conforming discontinuous Galerkin method which separates pressure and velocity approximation due to its cochain property. This allows us to establish the quasi-orthogonality property which is crucial for the proof of the contraction. We also establish the quasi-optimal complexity of the adaptive algorithm in terms of the degrees of freedom.

MSC 2010: 65N12; 65N50; 65N30; 65N15; 76D07

References

[1] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Eng. 142 (1997), No. 1-2,1-88.10.1016/S0045-7825(96)01107-3 Search in Google Scholar

[2] T. M. Austin, T. A. Manteuffel, and S. McCormick, A robust multilevel approach for minimizing H(div)-dominated functionals in an H1-conforming finite element space, Numer. Linear Algebra Appl. 11 (2004), No. 2-3,115-140.10.1002/nla.373 Search in Google Scholar

[3] R. Becker and S.Mao, Quasi-Optimality of Adaptive Nonconforming Finite Element Methods for the Stokes Equations, SIAM J. Numer. Anal. (2011). Search in Google Scholar

[4] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, 44, Springer-Verlag, Berlin-Heidelberg, 2013. Search in Google Scholar

[5] A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal. 48 (2010), No. 2, 734-771.10.1137/08072838X Search in Google Scholar

[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed, Springer, 2002. Search in Google Scholar

[7] C. Carstensen, D. Peterseim, and H. Rabus, Optimal adaptive nonconforming FEM for the Stokes problem, Numerische Mathematik123 (2013), No. 2, 291-308.10.1007/s00211-012-0490-8 Search in Google Scholar

[8] J. M. Cascon, Ch. Kreuzer, and R. Nochetto, Quasi-optimal rate of convergence of adaptive finite element methods., SIAM J. Numer. Anal. 46 (2008), No. 5, 2524-2550.10.1137/07069047X Search in Google Scholar

[9] J. M. Cascon, Ch. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), No. 5, 2524-2550.10.1137/07069047X Search in Google Scholar

[10] P. Morin E. Bänsch and R. Nochetto, An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition, SIAM J. Numer. Anal. 40 (2002), 1207-1229.10.1137/S0036142901392134 Search in Google Scholar

[11] J. Hu and J.Xu, Convergence of Adaptive Conforming and Nonconforming Finite Element Methods for the Perturbed Stokes Equation, Research Report, School of Mathematical Sciences and Institute of Mathematics, Peking University (2007). Search in Google Scholar

[12] J. Hu and J.Xu, Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem, J. Sci. Comp. 55 (2013), 125-148.10.1007/s10915-012-9625-4 Search in Google Scholar

[13] G. Kanschat and N. Sharma, Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods, SIAMJ. Numer. Anal. 52 (2014), No.4,1822-1842.10.1137/120902975 Search in Google Scholar

[14] Y. Kondratyuk, Adaptive finite element algorithms for the Stokes problem: Convergence rates and optimal computational complexity, Department of Mathematics, Utretch University (2006), Preprint 1346. Search in Google Scholar

[15] Y. Kondratyuk and R. Stevenson, An optimal adaptive finite element method for the Stokes problem, SIAM J. Numer. Anal. 46 (2008), No. 2, 747-775.10.1137/06066566X Search in Google Scholar

[16] J.-C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980), 315-341.10.1007/BF01396415 Search in Google Scholar

[17] I. Perugia and D. Schätzau, An hp-analysis of the local discontinuous Galerkin method for diffusion problems, J. Sci. Com- put. 17 (2002), 561-571.10.1023/A:1015118613130 Search in Google Scholar

[18] P.-A. Raviart and J. M. Thomas, A Mixed Method for Second Order Elliptic Problems, Mathematical Aspects of the Finite Element Method (Eds. I. Galligani and E. Magenes), Springer, New York, 1977, pp. 292-315. Search in Google Scholar

[19] J. Schoeberl, A posteriori error estimates for Maxwell equations, Mathematics of Computation77 (2008), 633-649. Search in Google Scholar

[20] J. Schäberl, A Multilevel Decomposition Result in H(Curl), on the author’s web site, 2010. Search in Google Scholar

[21] D. Schätzau, C. Schwab, and A. Toselli, hp-DGFEM for Incompressible Flows, SIAM J. Numer. Anal. 40 (2003), 2171-2194. Search in Google Scholar

[22] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. 50 (1994), 67-83.10.1016/0377-0427(94)90290-9 Search in Google Scholar

[23] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, John Wiley/Teubner, 1996. Search in Google Scholar

[24] T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities, Computer Methods in Applied Mechanics and Engineering192 (2003), No. 25, 2765 - 2773.10.1016/S0045-7825(03)00294-9 Search in Google Scholar

Received: 2016-12-14
Revised: 2018-03-06
Accepted: 2018-03-14
Published Online: 2018-03-19
Published in Print: 2018-12-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston