Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 6, 2016

Transmitter Spatial Diversity for FSO Uplink in Presence of Atmospheric Turbulence and Weather Conditions for Different IM Schemes

  • Anjitha Viswanath EMAIL logo , Virander Kumar Jain and Subrat Kar

Abstract

We investigate the error performance of an earth-to-satellite free space optical uplink using transmitter spatial diversity in presence of turbulence and weather conditions, using gamma–gamma distribution and Beer–Lambert law, respectively, for on–off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. Weather conditions such as moderate, light and thin fog cause additional degradation, while dense or thick fog and clouds may lead to link failure. The bit error rate reduces with increase in the number of transmitters for all the schemes. However, beyond a certain number of transmitters, the reduction becomes marginal. Diversity gain remains almost constant for various weather conditions but increases with increase in ground-level turbulence or zenith angle. Further, the number of transmitters required to improve the performance to a desired level is less for M-PPM scheme than M-DPPM and OOK schemes.

References

1. Khaligi MA, Uysal M. Survey on free space optical communication: a communication theory perspective. IEEE Commun Surv Tutorials 2014;16(4):2231–58.10.1109/COMST.2014.2329501Search in Google Scholar

2. Arnon S, Uysal M, Ghassemlooy Z, Xu Z, Cheng J. Optical wireless communications. IEEE J Sel Areas Commun 2015;33(9):1733–7.10.1109/JSAC.2015.2444491Search in Google Scholar

3. Toyoshima M, Takayama Y, Takahashi T, Suzuki K, Kimura S, Takizawa K. Ground-to-satellite laser communication experiments. IEEE Aerosp Electron Syst Mag 2008;23(8):10–8.10.1109/MAES.2008.4607894Search in Google Scholar

4. Sandalidis HG. Performance of a laser earth-to-satellite link over turbulence and beam wander using the modulated gamma–gamma irradiance distribution. Appl Opt 2011;50(6):952–61.10.1364/AO.50.000952Search in Google Scholar PubMed

5. Andrews LC, Phillips RL. Laser beam propagation through random media. Washington, DC: SPIE Press, 2005.10.1117/3.626196Search in Google Scholar

6. Andrews LC, Phillips RL, Hopen CY. Laser beam scintillation with applications. Washington, DC: SPIE Press, 2001.10.1117/3.412858Search in Google Scholar

7. Majumdar AK. Advanced free space optics (FSO) – a systems approach. New York: Springer, 2015.10.1007/978-1-4939-0918-6Search in Google Scholar

8. Abaza M, Mesleh R, Mansour A, Aggoune EM. Diversity techniques for a free-space optical communication system in correlated log-normal channels. Opt Eng 2014;53(1):016102-1–18.10.1117/1.OE.53.1.016102Search in Google Scholar

9. Navidpour SM, Uysal M, Kavehrad M. BER performance of free-space optical transmission with spatial diversity. IEEE Wireless Commun 2007;6(8):2813–9.10.1109/TWC.2007.06109Search in Google Scholar

10. Gappmair W. Error performance of coded FSO links in turbulent atmosphere modeled by gamma–gamma distributions. IEEE Trans Wireless Commun 2009;8(5):2209–12.10.1109/TWC.2009.080076Search in Google Scholar

11. Feng F, White IH, Wilkinson TD. Aberration correction for free space optical communication using rectangular zernike model wavefront sensing. IEEE J Lightwave Technol 2014;32(6):1239–45.10.1109/JLT.2014.2301634Search in Google Scholar

12. Kaur P, Jain VK, Kar S. Performance analysis of FSO array receivers in presence of atmospheric turbulence. IEEE Photonics Lett Technol 2014;26(12):1165–8.10.1109/LPT.2014.2316534Search in Google Scholar

13. Tsiftsis TA, Sandalidis HG, Karagiannidis GK, Uysal M. Optical wireless links with spatial diversity over strong turbulence channels. IEEE Trans Wireless Commun 2009;8(2):951–7.10.1109/TWC.2009.071318Search in Google Scholar

14. Khalighi MA, Schwartz N, Aitamer N, Bouinnana S. Fading reduction by aperture averaging and spatial diversity in optical wireless systems. J Opt Commun Networking 2009;1(6):580–93.10.1364/JOCN.1.000580Search in Google Scholar

15. Kaushal H, Jain VK, Kar S. Ground-to-satellite optical communication link performance with spatial diversity in weak atmospheric turbulence. Fiber Integr Opt 2010;29(4):315–40.10.1080/01468030.2010.491893Search in Google Scholar

16. Ma J, Jiang Y, Yu S, Tan L, Du W. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground to satellite optical communications. Opt Commun 2010;283(2):237–42.10.1016/j.optcom.2009.10.007Search in Google Scholar

17. Guo H, Luo B, Ren Y, Zhao S, Dang A. Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius. Opt Lett 2010;35(12):1977–9.10.1364/OL.35.001977Search in Google Scholar PubMed

18. Dios F, Rubio JA, Rodriguez A, Comeron A. Scintillation and beam-wander analysis in an optical ground station-satellite uplink. Appl Opt 2004;43(19):3866–73.10.1364/AO.43.003866Search in Google Scholar

19. Dan C, Xi-zeng K, Jian-xun L. Blind equalization algorithm of wireless optical communication using subcarrier modulation over turbulence channel. Acta Photonica Sin 2013;42(9):1025–30.10.3788/gzxb20134209.1025Search in Google Scholar

20. Viswanath A, Jain VK, Kar S. Analysis of earth to satellite FSO link performance in presence of turbulence, beam wander induced pointing error and weather conditions for different intensity modulation schemes. IET Commun 2015;9(18):2253–8.10.1049/iet-com.2015.0379Search in Google Scholar

21. Ghassemlooy Z, Popoola W, Rajbhandari S. Optical wireless communication. Boca Raton, FL: CRC Press, 2012.Search in Google Scholar

22. Horvath H. On the applicability of the Koschmieder visibility formula. Atmos Environ 1971;5(3):177–84.10.1016/0004-6981(71)90081-3Search in Google Scholar

23. Gultepe I. Fog and boundary layer clouds: fog visibility and forecasting. Basel: Springer, 2007.10.1007/978-3-7643-8419-7Search in Google Scholar

24. Awan MS, Marzuki, Leitgeb E, Hillbrand B, Nadeem F, Khan MS. Cloud attenuations for free-space optical links. In International Workshop on Satellite and Space Communications, Italy, September 2009:274–8.10.1109/IWSSC.2009.5286364Search in Google Scholar

25. Latinovic V. Advanced optical communication systems. Jersey City, NJ: Clanrye International, 2015.Search in Google Scholar

26. Wang Y, Wang D, Ma J. On the performance of coherent OFDM systems in free-space optical communication. IEEE Photonics J 2015;7(4):7902410-1–11.10.1109/JPHOT.2015.2450532Search in Google Scholar

27. Gappmair W, Muhammad SS. Error performance of PPM/Poisson channels in turbulent atmosphere with gamma–gamma distribution. IET Electron Lett 2007;43(16):880–2.10.1049/el:20070901Search in Google Scholar

28. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series. Amsterdam: Gordon and Breach Science Publishers, 1986.Search in Google Scholar

29. Ghassemlooy Z, Popoola W, Rajbhandari S, Amiri M, Hashemi S, A synopsis of modulation techniques for wireless infrared communication. In Proc. Int. Conf. on Transparent Optical Networks-Mediterranean Winter, Tunisia, December 2007:1–6.10.1109/ICTONMW.2007.4446952Search in Google Scholar

30. Viswanath A, Gopal P, Jain VK, Kar S. Performance enhancement by aperture averaging in terrestrial and satellite free space optical links. IET Opt 2016;10(3):111–7.10.1049/iet-opt.2015.0042Search in Google Scholar

31. Viswanath A, Kaushal H, Jain VK, Kar S, Evaluation of performance of ground to satellite free space optical link under turbulence conditions for different intensity modulation schemes. In Proc. SPIE, California, 2014:897106-1–12.10.1117/12.2038212Search in Google Scholar

32. Ma J, Jiang Y, Yu S, Tan L, Du W. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground to satellite optical communications. Opt Commun 2010;283:237–42.10.1016/j.optcom.2009.10.007Search in Google Scholar

33. Jiang Y, Tao K, Song Y, Fu S. Packet error rate analysis of OOK, DPIM, and PPM modulation schemes for ground-to-satellite laser uplink communications. Appl Opt 2014;53(7):1268–73.10.1364/AO.53.001268Search in Google Scholar PubMed

34. Haykin S. Digital communications. London: Wiley, 2006.Search in Google Scholar

35. Viswanath A, Jain VK, Kar S, Experimental evaluation of the effect of aperture averaging technique on the performance of free space optical communication link for different intensity modulation schemes. In Proc. 7th Int. Conf. Commun. Systems and Netw., Bangalore, 2015:1–5.10.1109/COMSNETS.2015.7098679Search in Google Scholar

36. Rajbhandari S, Ghassemlooy Z, Haigh PA, Kanesan T, Tang X. Experimental error performance of modulation schemes under controlled laboratory turbulence FSO channel. J Lightwave Technol 2015;33(1):244–50.10.1109/JLT.2014.2377155Search in Google Scholar

Received: 2016-6-30
Accepted: 2016-8-1
Published Online: 2016-9-6
Published in Print: 2017-12-20

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/joc-2016-0095/pdf
Scroll to top button