Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 24, 2018

Performance Estimation of Advanced Intensity Modulation Formats Using Hybrid SAC-OCDMA through IsOWC Channel

Himali Sarangal, Simrandeep Singh Thapar, Paramjot Singh, Isha Sharma and Harmandar Kaur

Abstract

Spectral amplitude coding optical code division multiple access (SAC-OCDMA) is one of the most important multiplexing schemes of OCDMA that has turned out to be a stimulating investigating area in optical communication due to its increased privacy, network capacity and its flexibility in allocating the channels and asynchronous environment. On the other hand, Inter-satellite optical wireless communication (IsOWC) which is a favorable area of research in optical communication is useful for bursty transmissions and long-distance communications. In this paper, we have designed a hybrid SAC-OCDMA system through IsOWC channel using ZCC code for advanced intensity modulation formats (CSRZ, Db, and AMI). The investigation is done for four users at a bit rate of 40(4×10) Gb/s using a direct detection technique. Further, on comparing the proposed system using advanced intensity modulation formats, the result shows that system using CSRZ format is better in terms of BER, Q-factor, SNR and the eye diagram with respect to AMI and Db.

References

1. Nisar KS, Sarangal H, Thapar SS, Qutubuddin M, Rahamath M. Performances analysis of permutation matrix zero cross correlation code for SAC-OCDMA systems. Eur J Eng Res Sci. 2018Jan;3:15–19. DOI:10.24018/EJERSSearch in Google Scholar

2. Yin H, Richardson DJ. Optical code division multiple access communication networks theory and applications: architectures, protocols and applications for OCDMA networks. Springer-Verlag Berlin Heidelberg, Tsinghua University Press China, 2009: 300. Doi:10.1007/978-3-540-68468-8Search in Google Scholar

3. Abd TH, Alijunid SA, Fadhil HA, Ahmad RB, Rashid MA. New approach for evaluation of the performance of spectral amplitude coding-optical code division multiple access system on high-speed data rate. IET Commun. 2012Aug;6:1742–49. DOI:10.1049/iet-com.2011.0482Search in Google Scholar

4. Kaur K. Analysis of different OCDMA techniques: A Review. Int J Recent Innov Trends Comput Commun. 2014 Jun;2:1726–29.Search in Google Scholar

5. Jindal S, Gupta N. OCDMA: study and future aspects. Recent development in wireless sensor and Ad-hoc networks. New Delhi: Springer, 2015:125–67. DOI:10.1007/978-81-322-2129-6_8.Search in Google Scholar

6. Sarangal H, Singh A, Malhotra J. Construction and analysis of a novel SAC-OCDMA system with EDW coding using direct detection technique. J Opt Commun. Aug 2017; DOI:10.1515/joc-2017-0061.Search in Google Scholar

7. Sahbudin RKZ, Kamarulzaman M, Hitam S, Mokhtar M, Anas SBA. Performance of SAC OCDMA-FSO communication systems. Optik-Int J Light Electron Opt. 2013 Sep;124:2868–70.Search in Google Scholar

8. Garadi A, Bouazza BS, Bouarfa A, Meddah K. Enhanced performances of SAC-OCDMA system by using polarization encoding. J Opt Commun. Jan 2017; DOI:10.1515/joc-2017-0182.Search in Google Scholar

9. Sarangal H, Singh A, Malhotra J, Chaudhary S. A cost effective 100 Gbps hybrid MDM-OCDMA-FSO transmission system under atmospheric turbulences. Opt Quant Electron. 2017May;49:184. DOI:10.1007/s11082-017-1019-2Search in Google Scholar

10. Djebbari A, Garadi A, Dayoub I, Taleb-Ahmed A. A new code construction with zero cross correlation based on BIBD. Optik-Int J Light Electron Opt. 2013 Sep;124:3419–21.Search in Google Scholar

11. Spectral C-CY. Efficiencies of the optical CDMA-Based PONs using two-code keying. IEEE Commun Lett. 2010 Aug;14:767–69.Search in Google Scholar

12. Abd TH, Alijunid SA, Fadhil HA, Ahmad RA, Saad NM. Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA network. Opt Fiber Technol. 2011 Jul;17:273–80.Search in Google Scholar

13. Kumar S, Gill SS, Singh K. Performance investigation of inter-satellite optical wireless communications (IsOWC) system employing multiplexing techniques. Wireless Pers Commun. 2018 Jan;98:1461–72.Search in Google Scholar

14. Patnaik B, Sahu PK. Inter-satellite optical wireless communication system design and simulation. IET Commun. 2012Nov;6:2561–67. DOI:10.1049/iet-com.2012.0044Search in Google Scholar

15. Sharma V, Kaur A.Modeling and simulation of long reach high speed inter- satellite link (ISL). Optik. 2013Jan;125:883–86. DOI:10.1016/j.ijleo.2013.07.090Search in Google Scholar

16. Winzer PJ, Essiambre RJ. Advance optical modulation formats. Proc IEEE. 2006May;94:952–85. DOI:10.1109/JPROC.2006.873438Search in Google Scholar

17. Singh M. Enhanced performance analysis of inter-aircraft optical wireless communication link (IaOWC) using EDFA Pre-amplifier. Wireless Pers Commun. 2017Dec;97:4199–209. DOI:10.1007/s11277-017-4720-3Search in Google Scholar

18. Tan L, Yang Y, Ma J, Yu J. Pointing and tracking errors due to localized deformation in inter-satellite laser communication links. Opt Express. 2008 Aug 18;16:13372–80.Search in Google Scholar

Received: 2018-05-25
Accepted: 2018-08-14
Published Online: 2018-08-24
Published in Print: 2021-04-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston