Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter February 4, 2020

Impact Analysis of the Number of Core on Hexagonal Multicore Fibre

  • Ajay Kumar Vyas EMAIL logo

Abstract

The multicore fibre (MCF) is an effective and auspicious technology to overawe the limitation of the single-mode fibre. One of the important applications of MCF is power over fibre. In this paper, we have been designed eight different hexagonal structures by using 6, 7, 8, 9, 10, 11, 12 and 13 cores MCF. Those designs are categorized as even core multicore fibre (ECMCF) for 6, 8, 10 and 12 cores and odd core multicore fibre (OCMCF) for 7, 9, 11 and 13 number of cores. We also studied the impact analysis of odd or even number of the cores. The proposed designs having 140 µm diameter, large effective area of 1256 µ2m and two pitches d1=20 µm and d2=10 µm. The comparative analysis has been done by core multiplicity factor, electric field, coupled power, cross overpower parameter calculated for 10,000 samples. The hexagonal core shape MCF shows better performance if the number of the core in even number.

Acknowledgements

Authors would like to express their gratitude to Optiwave Corporation, Canada developed and provide us Licence free 12.0 version of OptiFDTD.

References

1. Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7:354–62.10.1038/nphoton.2013.94Search in Google Scholar

2. Zhu Y, Duan K, Yang H, Zhao B, Zhao W. Very large mode area optical fiber with complex ring cores. Int J Light Electron Opt. 2014;125:7016–19.10.1016/j.ijleo.2014.08.083Search in Google Scholar

3. Buryak AV, Akhmediev NN. Stationary pulse propagation in N-core nonlinear fiber arrays. IEEE J Quantum Electron. 1995;31:682–8.10.1109/3.371943Search in Google Scholar

4. Sasaki Y, Amma Y, Takenaga K, Matsuo S, Saitoh K, Koshiba M. Few-mode multicore fiber with 36 spatial modes. J Light Technol. 2015;33:964–70.10.1109/JLT.2014.2375876Search in Google Scholar

5. Chih-Lin I, Han L, Korhonen J, Huang J, Han. L. RAN revolution with NGFI (xHaul) for 5G. J Light Technol. 2018;36:541–50.10.1364/OFC.2017.W1C.7Search in Google Scholar

6. Rademacher G, Ryf R, Fontaine NK, Chen H, Essiambre R-J, Puttnam BJ, et al. Long-Haul transmission over few-mode fibers with space-division multiplexing. J Light Technol. 2018;36:1382–8.10.1109/JLT.2017.2786671Search in Google Scholar

7. Jeong YE, Sahu JK, Payne DN, Nilsson J. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt Express. 2004;12:6088–92.10.1364/OPEX.12.006088Search in Google Scholar

8. Chen B, Yating W, Han M, Zhang Q. A novel architecture of millimeter-wave full-duplex radio-over-fiber system with source-free BS based on polarization division multiplexing and wavelength division multiplexing. Prog Electromagnet Res. 2018;80:103–10.10.2528/PIERC17102201Search in Google Scholar

9. Yamaguchi K, Suzuki K, Kawahara H, Fukutoku M, Hashimoto T, Miyamoto Y. Integrated wavelength selective switch array for space division multiplexed network with ultra-low inter-spatial channel crosstalk. International Conference on Optical Fiber Communication, 2018:1–3.10.1364/OFC.2018.Th1J.3Search in Google Scholar

10. Van Uden R, Amezcua Correa R, Antonio Lopez E, Huijskens FM, Cen Xia G, Schülzgen LA, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics. 2014;8:865–70.10.1038/nphoton.2014.243Search in Google Scholar

11. Trinel J-B, Le Cocq G, Bouwmans G, Quiquempois Y, Cassez A, Bigot L. Design and characterization of a 10-mode few-mode erbium-doped fiber with multicore pedestal core. Proc. SPIE 10528 Optical Components and Materials XV. 2018;1052813.Search in Google Scholar

12. Jin W, Chiang KS. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Opt Express. 2018;26:15289–99.10.1364/OE.26.015289Search in Google Scholar PubMed

13. Sabitu RI, Dong-Nhat N, Malekmohammadi A. High dispersion four-mode fiber for mode-division multiplexing systems. Int J Light Electron Opt. 2019;181:1–12.10.1016/j.ijleo.2018.12.008Search in Google Scholar

14. Arakawa Y, Nakamura T, Urino Y, Fujita T, Silicon photonics for next generation system integration platform. IEEE Commun Mag. 51;2013:72–7.10.1109/MCOM.2013.6476868Search in Google Scholar

15. Chan TH, Ling Y, Tam H-Y, Yi-Qing NS, Liu Y, Chung WH, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation. Eng Struct. 2006;28:648–59.10.1016/j.engstruct.2005.09.018Search in Google Scholar

16. Abedin KS. Cladding-pumped multicore fiber amplifier for space division multiplexing, Handbook of Optical Fibers, 2018:1–28.10.1007/978-981-10-1477-2_50-1Search in Google Scholar

17. Baldwin C. Fiber optic sensors in the oil and gas industry: current and future applications. In Opto-Mechanical Fiber Optic Sensors, 2018:211–36.10.1016/B978-0-12-803131-5.00008-8Search in Google Scholar

18. Gan L, Zhou J, Fu S, Tang M, Liu D. Efficient channel model for homogeneous weakly coupled multicore fibers. IEEE J Sel Top Quantum Electron. 2019;26:1–9.10.1109/JSTQE.2019.2916423Search in Google Scholar

19. Sillard P, Molin D, Bigot-Astruc M, De Jongh K, Achten F, Velázquez-Benítez AM, et al. Low-differential-mode-group-delay 9-LP-mode fiber. J Light Technol. 2016;34:425–30.10.1364/OFC.2015.M2C.2Search in Google Scholar

20. Soma D, Wakayama Y, Beppu S, Sumita S, Tsuritani T, Hayashi T, et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J Light Technol. 2018;36:1362–8.10.1109/JLT.2018.2799380Search in Google Scholar

21. Ren W, Tan Z. A study on the coupling coefficients for multi-core fibers. Int J Light Electron Opt. 2016;127:3248–52.10.1016/j.ijleo.2015.12.021Search in Google Scholar

22. Kumar D, Ranjan R. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure. Opt Fiber Techn. 2018;41:95–103.10.1016/j.yofte.2018.01.002Search in Google Scholar

23. Raghuwanshi SK, Palodiya V. Performance study of different step index multi-clad fiber for broadband application. Int J Light Electron Opt. 2015;126:3767–70.10.1016/j.ijleo.2015.07.134Search in Google Scholar

24. Jin W, Jian S. Numerical and simulation analyses on supermode characteristics of dual-core fiber and four-core fiber. Int J Light Electron Opt. 2017;132:32–8.10.1016/j.ijleo.2016.12.042Search in Google Scholar

25. Trinel J-B, Le Cocq G, Bouwmans G, Quiquempois Y, Cassez A, Bigot L. Design and characterization of a 10-mode few-mode erbium-doped fiber with multicore pedestal core. In Optical Components and Materials XV, vol. International Society for Optics and Photonics, 2018;10528–13.Search in Google Scholar

26. Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K. Few-mode multicore fibers for long-haul transmission line. Opti Fiber Technol. 2017;35:19–27.10.1016/j.yofte.2016.09.017Search in Google Scholar

27. Ahmed K, Islam MS, Paul BK. Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int J of Mod Sci. 2017;3:29–38.10.1016/j.kijoms.2017.02.001Search in Google Scholar

28. Yao W-Y, Zhu Y-Y, Wang S-M, Zhang W, Wei Y, Yao W-J. Flat-topped hollow laser beams can be obtained by using the multi-core photonic crystal fiber mixed with GeO2. Int J Light Electron Opt. 2015;126:3761–6.10.1016/j.ijleo.2015.07.124Search in Google Scholar

29. Gené JM, Winzer PJ. A universal specification for multicore fiber crosstalk. IEEE Photonics Techn Lett. 2019;31:673–6.10.1109/LPT.2019.2903717Search in Google Scholar

30. Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Opti Comm. 2010;283:1331–7.10.1016/j.optcom.2009.11.091Search in Google Scholar

31. Shashidharan S, Zhu F, Yang Y. Coupling of supermodes in dual-core mPOF and its application in temperature and strain sensing. Int J Light Electron Opt. 2019;195:163112.10.1016/j.ijleo.2019.163112Search in Google Scholar

32. Xiang H, Jiang Y. Fiber bragg grating inscription in multi-core photonic crystal fiber by femtosecond laser. Int J Light Electron Opt. 2018;171:9–14.10.1016/j.ijleo.2018.06.020Search in Google Scholar

33. Sultana J, Islam MS, Faisal M, Islam MR, Brian W-HN, Ebendorff-Heidepriem H, et al. Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opti Comm. 2018;407:92–6.10.1016/j.optcom.2017.09.020Search in Google Scholar

34. Islam MS, Paul BK, Ahmed K, Asaduzzaman S. Rhombic core photonic crystal fiber for sensing applications: modeling and analysis. Int J Light Electron Opt. 2018;157:1357–65.10.1016/j.ijleo.2017.12.048Search in Google Scholar

35. Vyas AK. Analysis of different structure and nonlinear distortion of multicore fiber for power over fiber applications. Int J Light Electron Opt. 2018;168:184–91.10.1016/j.ijleo.2018.04.106Search in Google Scholar

36. Zhang X-X, Shu-Guang L, Shuo L. Design of large mode area multicore photonic crystal fiber with a flat-top mode. Int J Light Electron Opt. 2013;124:3273–7.10.1016/j.ijleo.2012.11.001Search in Google Scholar

37. Koshiba M, Saitoh K, Takenaga K, Matsuo S. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Opti Express. 2011;19:102–11.10.1364/OE.19.00B102Search in Google Scholar PubMed

38. Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, et al. Large effective-area few-mode multicore fiber. IEEE Photonics Technol Lett. 2012;24:1941–4.10.1109/LPT.2012.2219618Search in Google Scholar

39. Sakamoto T, Mori T, Wada M, Yamamoto T, Yamamoto F, Nakajima K. Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems. Opt Fiber Technol. 2017;35:8–18.10.1016/j.yofte.2016.07.010Search in Google Scholar

40. Takenaga K, Arakawa Y, Sasaki Y, Tanigawa S, Matsuo S, Saitoh K, et al. A large effective area multi-core fiber with an optimized cladding thickness. Opt Express. 2011;19:543–50.10.1364/OE.19.00B543Search in Google Scholar PubMed

41. Mosley PJ, Gris-Sánchez I, Stone JM, Francis-Jones RJA, Ashton DJ, Tim A. Birks, Characterizing the variation of propagation constants in multicore fiber. Opt Express. 2014;22:25689–99.10.1364/OE.22.025689Search in Google Scholar PubMed

42. Zhang S, Yu X, Zhang Y, Shum P, Zhang Y, Xia L, et al. Theoretical study of dual-core photonic crystal fibers with metal wire. IEEE Photon J. 2012;4:1178–87.10.1109/JPHOT.2012.2206019Search in Google Scholar

Received: 2019-09-04
Accepted: 2020-01-20
Published Online: 2020-02-04

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.12.2023 from https://www.degruyter.com/document/doi/10.1515/joc-2019-0238/html
Scroll to top button