Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 30, 2015

Comparison of precipitable water over Ghana using GPS signals and reanalysis products

  • A. A. Acheampong , C. Fosu , L. K. Amekudzi and E. Kaas


Signals from Global Navigational Satellite Systems (GNSS) when integrated with surface meteorological parameters can be used to sense atmospheric water vapour. Using gLAB software and employing precise point positioning techniques, zenith troposphere delays (ZTD) for a GPS base station at KNUST, Kumasi have been computed and used to retrieve Precipitable Water (PW). The PW values obtained were compared with products from ERA-Interim and NCEP reanalysis data. The correlation coefficients, r, determined from these comparisons were 0.839 and 0.729 for ERA-interim and NCEP respectively. This study has demonstrated that water vapour can be retrieved with high precision from GNSS signal. Furthermore, a location map have been produced to serve as a guide in adopting and installing GNSS base stations in Ghana to achieve a country wide coverage of GNSS based water vapour monitoring.


Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H., 1994, GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl Met, 33(3):379- 386.10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2Search in Google Scholar

Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., and Ware, R., 1992, GPS meteorology- remote sensing of atmospheric water vapor using the global positioning system. J. Geophy. Res. 97(D14):15787-15801.10.1029/92JD01517Search in Google Scholar

Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., and Agusti-Panareda, A., 2007, Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over africa. Quart. J. Roy. Met. Soc., 133(629):2011-2027.10.1002/qj.185Search in Google Scholar

Bohm, J., Niell, A., Tregoning, P., and Schuh, H., 2006, Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophy. Res. Letters, 33(7).10.1029/2005GL025546Search in Google Scholar

Bokoye, A. I., Royer, A., O’Neill, N. T., Cliche, P., McArthur, L. J. B., Teillet, P. M., Fedosejevs, G., and Theriault, J-M., 2003, Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska. J. Geophy. Res.: Atmospheres (1984-2012), 108(D15).10.1029/2002JD002721Search in Google Scholar

Bosy, J., Rohm,W., Sierny, J., and Kaplon, J., 2011, GNSS meteorology. TransNav-Int. J. Marine Navigat. Safety Sea Transport, pages 79- 83.Search in Google Scholar

Buizza, R., 2002, Chaos and weather prediction. European Centre for Medium-Range Weather, Internal Report; Meteorological Training Course, pages 1-28.Search in Google Scholar

Byun, S. H. and Bar-Sever, Y. E., 2009, A new type of troposphere zenith path delay product of the Interna- tional GNSS service. J. Geod. 83(3-4):1-7.10.1007/s00190-008-0288-8Search in Google Scholar

Dach, R., Hugentobler, U., Fridez, P., Meindl, M., et al., 2007, Bernese GPS software version 5.0. Astronomical Institute, University of Bern, 640.Search in Google Scholar

Davis, J., Herring, T., Shapiro, I., Rogers, A., and Elgered, G., 1985, Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci, 20(6):1593-1607.10.1029/RS020i006p01593Search in Google Scholar

De Haan, S. and Van Der Marel, H., 2008, Observing three dimensional water vapour using a surface network of GPS receivers. Atmospheric Chemistry and Physics Discussions, 8:17193-17235.10.5194/acpd-8-17193-2008Search in Google Scholar

El-Rabbany, A., 2002, Introduction to GPS: the Global Positioning System. Artech House Publishers, Norwood. Elgered, G., Davis, J. L., Herring, T. A., and Shapiro, I. I., 1991, Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophy. Res.: Solid Earth (1978-2012), 96(B4):6541-6555.10.1029/90JB00834Search in Google Scholar

Gendt, G., Dick, G., Reigber, C. H., Tomassini, M., Liu, Y., and Ramatschi, M., 2003, Demonstration of NRT GPS water vapor monitoring for numerical weather prediction in Germany. J Meteo. Societ. Jap, 82(1B):360-370.10.2151/jmsj.2004.361Search in Google Scholar

Hernandez-Pajares, M., Juan, J., Sanz, J., Ramos-Bosch, P., Rovira- Garcia, A., Salazar, D., Ventura-Traveset, J., Lopez-Echazarreta, C., and Hein, G, 2010, The ESA/UPC GNSS-lab tool (gLAB). In Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC’ 2010), ESTEC, Noordwijk, The Netherlands.Search in Google Scholar

Leick, A., 2003, GPS satellite surveying. Wiley, New York.Search in Google Scholar

Liou, Y-A., Teng, Y-T., Van Hove, T., and Liljegren, J. C., 2001, Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Met. 40(1):5-15.10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2Search in Google Scholar

Lynch, P., 2008, The origins of computer weather prediction and climate modeling. J. Computational Physics, 227(7):3431-3444.10.1016/ in Google Scholar

Mims, F. M., Chambers, L. H., and Brooks, D. R., 2011, Measuring total column water vapor by pointing an infrared thermometer at the sky. Bull. Amer. Met. Soc., 92(10).10.1175/2011BAMS3215.1Search in Google Scholar

Misra, P. and Enge, P., 2011, Global Positioning System: Signals, Measurements and Performance Revised 2nd Ed. Massachusetts: Ganga-Jamuna Press.Search in Google Scholar

Motell, C., Porter, J., Foster, J., Bevis, M., and Businger, S., 2002, Comparison of precipitable water over Hawaii using AVHRR-based split-window techniques, GPS and radiosondes. Int. J. Remote Sensing, 23(11):2335-2339.10.1080/01431160110069944Search in Google Scholar

Niell, A. E., 1996, Globalmapping functions for the atmosphere delay at radio wavelengths. J. Geophy. Res., 101(B2):3227-3246.10.1029/95JB03048Search in Google Scholar

Nilsson, T., Bohm, J., Wijaya, D. D., Tresch, A., Nafisi, V., and Schuh, H., 2013, Path delays in the neutral atmosphere. In Atmospheric Effects in Space Geodesy, J. Bohm and H. Schuh (eds.), pages 73- 136. Springer- Verlag Berlin Heidelberg.10.1007/978-3-642-36932-2_3Search in Google Scholar

Ning, T., 2012,. GPS Meteorology: With Focus on Climate Application. PhD thesis, Chalmers University of Technology. http:// in Google Scholar

Pichelli, E., Ferretti, R., Cimini, D., Perissin, D., Montopoli, M., Marzano, F. S., and Pierdicca, N., 2010, Water vapour distribution at urban scale using high-resolution numerical weather model and space- borne SAR interferometric data. Nat. Hazards Earth Syst. Sci., 10:121-132.10.5194/nhess-10-121-2010Search in Google Scholar

Pierdicca, N., Rocca, F., Basili, P., Bonafoni, S., Cimini, D., Ciotti, P., Ferretti, R., Foster, W., Marzano, F., Mattioli, V., et al., 2009, Atmospheric water-vapour effects on spaceborne interferometric SAR imaging: data synergy and comparison with ground-based measurements and meteorological model simulations at urban scale. In Antennas and Propagation, 3rd EuCAP European Conference, 3443-3447.10.1109/IGARSS.2009.5417668Search in Google Scholar

Pottiaux, E., 2010, Sounding the Earth’s Atmospheric Water Vapour Using Signals Emitted by Global Navi- gation Satellite Systems. PhD thesis, Department of Physics, Earth and Life Institute, Catholic University of Louvain.Search in Google Scholar

Saastamoinen, J., 1972, Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophysical Monograph Series, 15:247-251.10.1029/GM015p0247Search in Google Scholar

Sahoo, S., Bosch-Lluis, X., Reising, S. C., and Vivekanandan, J., 2013, Spatial resolution and accuracy of re- trievals of 2D and 3D water vapor fields from ground-based microwave radiometer networks. In Radio Science Meeting, US National Committee of URSI10.1109/USNC-URSI-NRSM.2013.6525010Search in Google Scholar

Schiller, T., 2006, GNSS meteorology on moving platforms. Advances and limitations in kinematicwaterwapor estimation. Inside GNSS, 1(3):56-60.Search in Google Scholar

Seeber, G., 2003, Satellite geodesy: foundations, methods, and applications. de Gruyter.10.1515/9783110200089Search in Google Scholar

Seidel, D. J., 2002, Water vapor: Distribution and trends. Encyclopedia of Global Environmental Change, John Wiley & Sons, Ltd, Chichester.Search in Google Scholar

Shuman, F. G., 1978, Numerical weather prediction. Bulletin of the American Meteorological Society, 59:5-17.10.1175/1520-0477(1978)059<0005:NWP>2.0.CO;2Search in Google Scholar

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., 2007, Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. The IPCC scientific assessment, page 996. Cambridge University Press, UK and USA.Search in Google Scholar

Soos, A., 2010, Global warming and climate models. Warming-And-Climate-Models.html Accessed on May 2014.Search in Google Scholar

Thayer, G. D., 1974, An improved equation for the radio refractive index of air. Radio Sci. 9(10):803-807. USGS, 2011, Greenhouse gases. US Geodetic Survey Science Education Handout, http:// Accessed on Feb 2014.10.1029/RS009i010p00803Search in Google Scholar

Yoshihara, T., Tsuda, T., and Hirahara, K., 2000, High time resolution measurements of precipitable water vapor from propagation delay of GPS satellite signals. EARTH PLANETS AND SPACE, 52(7):479- 494. 10.1186/BF03351652Search in Google Scholar

Received: 2015-1-9
Accepted: 2015-11-16
Published Online: 2015-11-30

© 2015 A. A. Acheampong et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.2.2024 from
Scroll to top button