Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 28, 2019

Plate Coupling Mechanism of the Central Andes Subduction: Insight from Gravity Model

  • Rezene Mahatsente EMAIL logo

Abstract

The Central Andes experienced major earthquake (Mw =8.2) in April 2014 in a region where the giant 1877 earthquake (Mw=8.8) occurred. The 2014 Iquique earthquake did not break the entire seismic gap zones as previously predicted. Geodetic and seismological observations indicate a highly coupled plate interface. To assess the locking mechanism of plate interfaces beneath Central Andes, a 2.5-D gravity model of the crust and upper mantle structure of the central segment of the subduction zone was developed based on terrestrial and satellite gravity data from the LAGEOS, GRACE and GOCE satellite missions. The densities and major structures of the gravity model are constrained by velocity models from receiver function and seismic tomography.

The gravity model defined details of crustal and slab structure necessary to understand the cause of megathrust asperity generation. The densities of the upper and lower crust in the fore-arc (2970 – 3000 kg m−3) are much higher than the average density of continental crust. The high density bodies are interpreted as plutonic or ophiolitic structures emplaced onto continental crust. The plutonic or ophiolitic structures may be exerting pressure on the Nazca slab and lock the plate interfaces beneath the Central Andes subduction zone. Thus, normal pressure exerted by high density fore-arc structures and buoyancy force may control plate coupling in the Central Andes. However, this interpretation does not exclude other possible factors controlling plate coupling in the Central Andes. Seafloor roughness and variations in pore-fluid pressure in sediments along subduction channel can affect plate coupling and asperity generation.

References

Allmendinger, R., W., Jordan, T. E., Kay, S. M., and Isacks, B. L., 1997. The evolution of the Altiplano-Puna Plateau of the Central Andes, Annu. Rev. Earth Planet. Sci., 25,139–174.10.1146/annurev.earth.25.1.139Search in Google Scholar

Amante, C. and Eakins, B.W., 2009. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, 19.Search in Google Scholar

Álvarez, O., Gimenez, M.E., Braitenberg, C., and Folguera A., 2012. GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophys. J. Int., 190, 2, 941-959. doi:10.1111/j.1365-246X.2012.05556.x10.1111/j.1365-246X.2012.05556.xSearch in Google Scholar

Álvarez, O., Nacif, S., Gimenez, M., Folguera, A, and Braitenberg, C., 2014. GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin, Tectono-physics, 622, 198–215, doi:10.1016/j.tecto.2014.03.011.10.1016/j.tecto.2014.03.011Search in Google Scholar

Álvarez, O., Pesce, A., Gimenez, M., Folguera, A. Soler, S., and Chen, W., 2017. Analysis of the Illapel Mw=8.3 thrust earthquake rupture zone using GOCE derived gradients. Pure and Applied Geophysics, 174 (1) 47-75. https://doi.org/10.1007/s00024-016-1376-y10.1007/s00024-016-1376-ySearch in Google Scholar

Anderson, M. L., Alvarado, P., Zandt, G., and Beck, S., 2007.Geometry and brittle deformation of the subducting Nazca plate, central Chile and Argentina. Geophys. J. Int., 171(1), 419–434, doi:10.1111/j.1365-246X.2007.03483.x.10.1111/j.1365-246X.2007.03483.xSearch in Google Scholar

Audin, L., P. Lacanb, P., Tavera, H., and Bondoux, F. 2008. Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo fault system and active tectonics along the coastal cordillera, southern Peru. Tectonophysics, 459(1-4), 174-185, doi:10.1016/j.tecto.2007.1011.1070.10.1016/j.tecto.2007.1011.1070Search in Google Scholar

Bassett, D. and Watts, A.B., 2015. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochemistry, Geophysics, Geosystem, 1508–1540, http://dx.doi.org/10.1002/2014GC005684.10.1002/2014GC005684Search in Google Scholar

Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., and Simons, M., 2013. Andean structural control on interseismic coupling in the North Chile subduction zone, Nat. Geosci., 6, 462–467, doi:10.1038/NGEO1802.10.1038/ngeo1802Search in Google Scholar

Bilek, S. L., 2010. Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity, Tectonophysics, 495 (1-2), 2–14, doi:10.1016/j.tecto.2009.02.037.10.1016/j.tecto.2009.02.037Search in Google Scholar

Bilek, S.L., 2007. Influence of subducting topography on earthquake rupture. In: Dixon, T., Moore, J.C. (Eds.), The Seismogenic Zone of Subduction Thrust Faults. Columbia University Press.10.7312/dixo13866-005Search in Google Scholar

Bilek, S.L., Schwartz, S.Y., and DeShon, H.R. 2003. Control of seafloor roughness on earthquake rupture behavior. Geology, 31 (5): 455-458.10.1130/0091-7613(2003)031<0455:COSROE>2.0.CO;2Search in Google Scholar

Bomfim, E. P., Braitenberg, C., and Molina, E. C., 2013. Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophys. J. Int, vol. 195, 870 - 882, ISSN: 1365-246X, doi: 10.1093/gji/ggt283.10.1093/gji/ggt283Search in Google Scholar

Braitenberg, C. and Rabinovich, A.B., 2017. The Chile-2015 (Illapel) Earthquake and Tsunami. Pure and Applied Geophysics Topical Volume series, Birkhäuser; 1st ed., pp348.10.1007/978-3-319-57822-4Search in Google Scholar

Comte, D., Battaglia, J., Thurber, C., Zhang, H., Dorbath, L., and Glass, B., 2004. High-resolution subducting slab structure beneath northern Chile using the double-difference tomography method. Eos Trans. AGU 85 (47), Fall Meet. Suppl., Abstract S53B-0200.Search in Google Scholar

Castroviejo, R., Rodrigues, J.F., Tassinari, C., Pereira, E, and Acosta, J., 2010. Ophiolites in the Eastern Cordillera of the central Peruvian Andes. IMA2010 Cogress. 20th General Meet. Internt. Mineralogical Associ, Acta Mineral Petrgr., abstract Ser. Szeged, Budapest.Search in Google Scholar

Cella, F., 2015. GTeC- A versatile MATLAB tool for a detailed computation of the terrain correction and Bouguer gravity anomalies. Computer and Geosciences, 84, 72-85.10.1016/j.cageo.2015.07.015Search in Google Scholar

Charrier, R., Hérail, G., Pinto, L., García, M., Riquelme, R., Farías, M., and Muenoz, N., 2013. Cenozoic tectonic evolution in the Central Andes in northern Chile and west-central Bolivia: implications for paleogeographic, magmatic and mountain building evolution. Int. J. Earth Sci. (Geol. Rundsch) 102 (1), 235–264, http://dx.doi.org/10.1007/s00531-012-0801-4, 10.1007/s00531-012-0801-4.10.1007/s00531-012-0801-4,10.1007/s00531-012-0801-4Search in Google Scholar

Chlieh, M., Perfettini, H., Tavera, H., Avouac, J.-P., Remy, D., and Nocquet, J.-M., 2011. “Interseismic coupling and seismic potential along the Central Andes subduction zone”. J. Geophys. Res., 116, B12405, doi:10.1029/2010JB008166, 2011.10.1029/2010JB0081662011Search in Google Scholar

Delouis, B., Cisternas, A., Dorbath, L., Rivera, L., and Kausel, E., 1996. The Andean subduction zone between 22 and 25S (northern Chile): precise geometry and state of stress. Tectonophysics 259 (1–3), 81–100, http://dx.doi.org/10.1016/0040-1951(95)00065-8.10.1016/0040-1951(95)00065-8Search in Google Scholar

Förste, C., Bruinsma, S.L., Shako, R., Marty, J.C., Flechtner, F., Abrikosov, O., Dahle, C., Lemoine, J.M., Neumayer, K.H., Biancale, R., Barthelmes, F., König, R., and Balmino, G.; 2011. EIGEN-6 - A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, Vol. 13, EGU2011-3242-2, EGU General Assembly, Vienna.Search in Google Scholar

Förste, C., Bruinsma, S., Abrykosov, O., Flechtner, F., Marty, J.-C., Lemoine, J.-M., Dahle, C., Neumayer, K.-H., Barthelmes, F., König, R., and Biancale, R. 2014. EIGEN-6C4 - The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. Geophysical Research Abstracts, Vol. 16, EGU2014-3707, General Assembly European Geosciences Union, Vienna,Search in Google Scholar

Gutknecht, B.D., Götze, H.-J., Jentzsch, G., Jahr, T., Mahatsente, R., and Zeumann, S., 2014. Structure and state of stress of the Chilean subduction zone from terrestrial and satellite-derived gravity and gravity gradient data. Surveys in Geophysics, DOI: 10.1007/S10712-014-9296-9.10.1007/S10712-014-9296-9Search in Google Scholar

Gutscher, M.-A., Spakman, W., Bijwaard, H., and Engdahl, R., 2000. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19, 814–833.10.1029/1999TC001152Search in Google Scholar

Goetze, H.J., Lahmeyer, B, Schmidt, S., and Strunk., S., 1994. The lithospheric structure of the Central Andes (20–26S) as inferred from interpretation of regional gravity. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes—structure and evolution of an active continental margin. Springer, Berlin.10.1007/978-3-642-77353-2_1Search in Google Scholar

Goetze, H.J. and Pail, R., 2018. Insights from recent gravity satellite missions in the density structure of continental margins – With focus on the passive margins of the South Atlantic. Gondwana Research, 53, 285 – 308.10.1016/j.gr.2017.04.015Search in Google Scholar

Hackney, R., Echtler, H., Franz, G., Goetze, H.-J., Lucassen, F., Marchenko, D., Melnick, D., Meyer, S.S., Tasárová, Z., Tassara, A., and Wienecke, S., 2006. The segmented overriding plate and coupling at the south-central Chile margin (36S–42S). In: Oncken, O., Chong, G., Franz, G., Giese, P., Goetze, H.-J., Ramos, V.A., Strecker, M., Wigger, P. (Eds.), The Andes – Active Subduction Orogeny. Frontiers in Earth Science Series, vol. 1. Springer-Verlag, Berlin/Heidelberg/New York, 355–374.10.1007/978-3-540-48684-8_17Search in Google Scholar

Hosse, M., Pail, R., Horwath, M., Holzrichter, N., and Gutknecht, B.D., 2014. Combined Regional Gravity Model of the Andean Convergent Subduction Zone and Its Application to Crustal Density Modelling in Active Plate Margins. Surv. Geophys., 35, 1393 – 1415.10.1007/s10712-014-9307-xSearch in Google Scholar

Husen, S., Kissling, E., and Flueh, E.R., 2000. Local earthquake tomography of shallow subduction in north Chile: a combined on-shore and offshore study. J. Geophys. Res. Solid Earth (1978-2012.10.1029/2000JB900229Search in Google Scholar

Isacks, B., 1988. Uplift of the central Andean plateau and bending of the Bolivian orocline. J. Geophys. Res., 93, pp.3211-3231.10.1029/JB093iB04p03211Search in Google Scholar

Jarvis, A., Reuter, H.I., Nelson, A., and Guevara, E., 2008. Hole-filled SRTM for Globe Version 4: The CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org (accessed March 2016).Search in Google Scholar

Kato, A. and Nakagawa, S., 2014. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys. Res. Lett., 41, 5420–5427, doi:10.1002/2014GL061138.10.1002/2014GL061138Search in Google Scholar

Krabbenhöft, A., Bialas, J, Kopp, H., Kukowsky, N., and Huebscher, C., 2004. Crustal structure of the Peruvian continental margin from wide angle seismic studies. Geophys. J. Int., 159, 749–764.10.1111/j.1365-246X.2004.02425.xSearch in Google Scholar

Koether, N., Goetze, H.J., Gutknecht, B.D., Jahr, T., Jentzsch, G., Luecke, O.H., Mahatsente, R., Sharma, R., and Zeumann, S., 2012. The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? J. Geodyn. 59–60:207–218. doi:10.1016/j.jog.2011.11.004.10.1016/j.jog.2011.11.004Search in Google Scholar

Lallemand, S., Heuret, A., and Boutelier, D., 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones, Geochem. Geophys. Geosyst., 6, 1525-2027, Q09006, doi:10.1029/2005GC000917.10.1029/2005GC000917Search in Google Scholar

Li, B. and Ghosh, A., 2016. Imaging Rupture Process of the 2015 Mw 8.3 Illapel Earthquake Using the US Seismic Array. Pure Appl. Geophys. 173, 2245-225510.1007/s00024-016-1323-ySearch in Google Scholar

Mayer-Gürr, T., Rieser, D., Höck, E., Brockmann, J. M., Schuh, W. D., Krasbutter, I., Kusche, J., Maier, A., Krauss, S., Hausleitner, W., Baur, O., Jäggi, A., Meyer, U., Prange, L., Pail, R., Fecher, T., and Gruber, T., 2012. The new combined satellite only model GOCO03s. International Symposium on Gravity, Geoid and Height Systems (GGHS2012), Abstract.Search in Google Scholar

Métois, M., Socquet, A., Vigny, C., Carrizon, D., Peyrat, S., Delorme, A., Maureira, E., Valderas-Bermejo, M.-C., and Ortega, I., 2013. Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys. J. Int., 194, 1283–1294, doi:10.1093/gji/ggt183.10.1093/gji/ggt183Search in Google Scholar

Moreno, M., Melnick, D., Rosenau, M., Bolte, J., Klotz,J., Echtler,H., Baez, J., Bataille,K., Chen, J., Bevis, M., Hase, H., and Oncken, O., 2011. Heterogeneous plate locking in the South– Central Chile subduction zone: Building up the next great earthquake. Earth and Planetary Science Letters, 305(3-4), 413–424, doi:10.1016/j.epsl.2011.03.02510.1016/j.epsl.2011.03.025Search in Google Scholar

Moreno, M. S., Bolte, J. Klotz, J., and Melnick, D., 2009. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 36(16), doi:10.1029/2009gl03927610.1029/2009GL039276Search in Google Scholar

Moreno, M. S., Klotz, J., Melnick, D., Echtler, H., and Bataille, K., 2008. Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36-39°S). Geochemistry, Geophysics, Geosystems, 9(12), n/a– n/a, doi:10.1029/2008gc002198.10.1029/2008gc002198Search in Google Scholar

Norabuena and Snoke, 1994. Structure of the subducting Nazca Plate beneath Peru. Journal of Geophysical Research, Vol. 99, NO. B5, PAGES 9215-922610.1029/94JB00126Search in Google Scholar

Oncken, O., Asch, G., Haberland, C., Metchie, J., Sobolev, S., Stiller, M., Yuan, X.,Brasse, H., Buske, S., Giese, P., Goetze, H.J., Lueth, S., Scheuber, E., Shapiro, S.,Wigger, P., Yoon, M.-K., Bravo, P., Vieytes, H., Chong, G., Gonzales, G., Wilke, H.-G., Lüschen, E., Martinez, E., Rössling, R., Ricaldi, E., and Rietbrock, A., 2003. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96), J. Geophys. Res. 108 (B7), 2328, http://dx.doi.org/10.1029/2002JB001771.10.1029/2002JB001771Search in Google Scholar

Oncken, O., Chong, G., Franz, G., Giese,. P., Götze, H-J., Ramos, V., Strecker, M., and Wigger, P., 2006. The Andes – Active Subduction Orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, 567pp.10.1007/978-3-540-48684-8Search in Google Scholar

Pavlis, N.K., Holmes, S.A., Kenyon, S.C., and Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008),. J. Geophys Res 117(B4), doi:10.1029/2011JB008916.10.1029/2011JB008916Search in Google Scholar

Prezzi, C., Goetze, H.J., and Schmidt, S., 2009. 3D density model of the Central Andes. Phys Earth Planet Inter. 177(3–4):217–234. doi:10.1016/j.pepi.2009.09.00410.1016/j.pepi.2009.09.004Search in Google Scholar

Pérez-Gussinyé, M., Lowry, A. R., Phipps Morgan, J. and Tassara, A., 2008. Effective elastic thickness along the Andean margin and their relationship to subduction geometry. Geochem. Geophys. Geosyst., 9 (2).10.1029/2007GC001786Search in Google Scholar

Ramos, V.A., Escayola, M., Mutti, D., and Vujovich, G., 2000. Proterozoic–early Paleozoic ophiolites of the Andean basement of southern South America. Geological Society of America Special Paper 349, 331-349.10.1130/0-8137-2349-3.331Search in Google Scholar

Rietbrock, A., Ryder, I., Hayes, G., Haberland, C., Comte, D., Roecker, S., and Lyon-Caen., H., 2012. Aftershock seismicity of the 2010 Maule Mw=8.8, Chile, earthquake: Correlation between coseismic slip models and aftershock distribution? Geophys. Res. Lett., Vol. 39, L08310, doi:10.1029/2012GL051308.10.1029/2012GL051308Search in Google Scholar

Ruiz. S and Madariaga, R., 2018. Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733, 37-5610.1016/j.tecto.2018.01.015Search in Google Scholar

Schaller, T., Andersen,J., Götze, H.-J.,Koproch,N., Schmidt,S., Sobiesiak,M, Splettstoeßer, S., 2015. Segmentation of the Andean margin by isostatic models and gradients. Journal of South American Earth Sciences, 59, pp.69-85.10.1016/j.jsames.2015.01.008Search in Google Scholar

Schmidt, S., Goetze, H.J., 2006. Bouguer and isostatic maps of the Central Andes. In: Oncken, O., Chong, G., Franz, G., Giese, P., Goetze, H.J., Ramos, V.A., Strecker, M., Wigger, P. (Eds.), The Andes – Active Subduction Orogeny. Frontiers in Earth Science Series, vol. 1. Springer-Verlag, Berlin/Heidelberg/New York, pp. 559–565Search in Google Scholar

Schurr, B. G. Asch, G., Rosenau, M., Wang, R., Oncken, O., Barrientos, S., Salazar, P., Sobiesiak M., Meyer, U., Schmidt, S., Götze, H-J. and Krawczyk, C. M., 2007. Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. J. Geophys. Res., 112, B12308, doi:10.1029/2006JB004796.10.1029/2006JB004796Search in Google Scholar

Sobolev, S.V., Babeyko, A.Y., 1994. Modeling of mineralogical composition,density, and elastic wave velocities in anhydrous magmatic rocks. Surv.Geophys. 15, 515–544.10.1007/BF00690173Search in Google Scholar

Tassara, A., 2005. Interaction between the Nazca and South American plates and formation of the Altiplano–Puna plateau: Review of a flexural analysis along the Andean margin (15°–34°S), Tectonophysics 399, pp.39-57.10.1016/j.tecto.2004.12.014Search in Google Scholar

Tassara, A., Götze, H-J., Schmidt, S. and Hackney, R., 2006. Three-dimensional density model of the Nazca plate and the Andean continental margin, J. Geophys. Res. 111, Nr. B9, B09404, doi:10.1029/2005JB003976.10.1029/2005JB003976Search in Google Scholar

Tassara, A., 2010. Control of forearc density structure on megath-rust shear strength along the Chilean subduction zone, Tectono-physics 495:34-47. doi: 10.1016/j.tecto.2010.06.004.10.1016/j.tecto.2010.06.004Search in Google Scholar

Yáñez, G., Ranero, C.R., von Huene, R., Diaz, J., 2001. Magnetic anomaly interpretation across the southern central Andes (32–34): the role of the Juan Fernañdez Ridge in the late Tertiary evolution of the margin, J. Geophys. Res.106, 6325–6345.10.1029/2000JB900337Search in Google Scholar

Yi, W., Rummel, R., 2013. A comparison of GOCE gravitational models with EGM2008. Journal of Geodynamics, Vol. 73, 14-22, DOI: 10.1016/j.jog.2013.10.004.10.1016/j.jog.2013.10.004Search in Google Scholar

Yuan, X., Sobolev, S. V., Kind, R., Oncken, O., Bock, G., Asch, G., Comte, D., 2000. Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature, 408(6815), 958–961. http://doi.org/10.1038/3505007310.1038/35050073Search in Google Scholar PubMed

Received: 2018-11-07
Accepted: 2019-01-25
Published Online: 2019-06-28

© 2019 Rezene Mahatsente, published by De Gruyter Open

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 21.2.2024 from https://www.degruyter.com/document/doi/10.1515/jogs-2019-0002/html
Scroll to top button