Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 17, 2021

Accurate Sea Surface heights from Sentinel-3A and Jason-3 retrackers by incorporating High-Resolution Marine Geoid and Hydrodynamic Models

M. Mostafavi , N. Delpeche-Ellmann and A. Ellmann EMAIL logo


One of the major challenges of satellite altimetry (SA) is to produce accurate sea surface heights data up to the shoreline, especially in geomorphologically complex sea areas. New advanced re-tracking methods are expected to deliver better results. This study examines the achievable accuracy of Sentinel-3A (S3A) and Jason-3 (JA3) standard retrackers (Ocean and MLE4) with that of improved retrackers adapted for coastal and sea ice conditions (ALES+ SAR for S3A and ALES+ for JA3). The validation of SA data was performed by the integration of tide gauges, hydrodynamic model and high-resolution geoid model. The geoid being a key component that links the vertical reference datum of the SA with other utilized sources. The method is tested in the eastern section of Baltic Sea. The results indicate that on average reliable sea surface height (SSH) data can be obtained 2–3 km from the coastline for S3A (for both Ocean and ALES+SAR) whilst an average distance of 7–10 km for JA3 (MLE4 and ALES+) with a minimum distance of 3–4 km. In terms of accuracy, the RMSE (with respect to a corrected hydrodynamic model) of S3A ALES+ SAR and Ocean retrackers based SSH were 4–5 cm respectively, whereas with the JA3 ALES+ and MLE4 associated SSH RMSE of 6–7 cm can be achieved. The ALES+ and ALES+ SAR retrackers show SSH improvement within a range of 0.5–1 cm compared to the standard retrackers. This assessment showed that the adaptation of localized retrackers for the Baltic Sea (ALES+ and ALES+SAR) produced more valid observation closer to the coast than the standard retrackers and also improved the accuracy of SSH data.


Ågren J., Strykowski G., Bilker-Koivula M., Omang O., Märdla S., Forsberg R., Ellmann A., Oja T., Liepiņš I., Paršeliūnas E., Kaminskis J., Sjöberg L. E., and Valsson G., 2016. The NKG2015 gravimetric geoid model for the Nordic-Baltic region. 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems.Search in Google Scholar

Aldarias A., Gómez-Enri J., Laiz I., Tejedor B., Vignudelli S., and Cipollini P., 2020. Validation of Sentinel-3A SRAL Coastal Sea Level Data at High Posting Rate: 80 Hz. IEEE Trans Geosci Remote Sens. 58 (6): 3809–3821.10.1109/TGRS.2019.2957649Search in Google Scholar

Andersen O. B., Knudsen P., and Berry P. A. M., 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod., 84(3), 191–199. in Google Scholar

Birgiel E., Ellmann A., and Delpeche-Ellmann N., 2018. Examining the Performance of the Sentinel-3 Coastal Altimetry in the Baltic Sea Using a Regional High-Resolution Geoid Model. Proceedings - 2018 Baltic Geodetic Congress, BGC-Geomatics 2018, 196–201. in Google Scholar

Birgiel E., Ellmann A., and Delpeche-Ellmann N., 2019. Performance of sentinel-3A SAR altimetry retrackers: The SAMOSA coastal sea surface heights for the Baltic sea. International Association of Geodesy Symposia, 150, 23–32. in Google Scholar

Bosch W., Dettmering D., and Schwatke C., 2014. Multi-Mission Cross-Calibration of Satellite Altimeters: Constructing a Long-Term Data Record for Global and Regional Sea Level Change Studies. Remote Sens., 6(3), 2255–2281. in Google Scholar

Brown G. S., 1977. The Average Impulse Response of a Rough Surface and Its Applications. IEEE Trans. Antennas Propag, 25(1), 67–74. in Google Scholar

Carrere L., Lyard F., Cancet M., Guillot A., Carrere L., Lyard F., Cancet M., and Guillot, A., 2015. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. EGUGA, 5481. in Google Scholar

Cipollini P., Calafat F. M., Jevrejeva S., Melet A., and Prandi P., 2017. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges (Vol. 38, pp. 35–59). Springer, Cham. in Google Scholar

Delpeche-Ellmann, N., Mingelaitė, T., Soomere, T., 2017. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea. Journal of Marine Systems 171, 21–30. in Google Scholar

Desjonquères J. D., Carayon G., Steunou N., and Lambin J., 2010. Poseidon-3 Radar Altimeter: New Modes and In-Flight Performances. Mar. Geod., 33(sup1), 53–79. in Google Scholar

Dinardo S., 2020. Techniques and Applications for Satellite SAR Altimetry over water, land and ice - TUprints. in Google Scholar

Dinardo S., Bruno L., Ambrózio A., and Jerome B., 2014. SAR Altimetry Processing on Demand Service for CryoSat-2 and Sentinel-3 at ESA G-POD. Conference on Big Data from Space (BiDS’14). in Google Scholar

Ellmann A., Märdla S., and Oja T., 2019. The 5 mm geoid model for Estonia computed by the least squares modified Stokes’s formula. Surv. Rev., 52(373), 352–372. in Google Scholar

Gomez-Enri J., Cipollini P., Passaro M., Vignudelli S., Tejedor B., and Coca J., 2016. Coastal Altimetry Products in the Strait of Gibraltar. IEEE Trans Geosci Remote Sens, 54(9), 5455–5466. in Google Scholar

Hayne G. S., 1980. Radar Altimeter Mean Return Waveforms from Near-Normal-Incidence Ocean Surface Scattering. IEEE Trans. Antennas Propag, 28(5), 687–692. in Google Scholar

Idris N.H., Vignudelli S., and Xiaoli D., 2021. Assessment of retracked sea levels from Sentinel-3A Synthetic Aperture Radar (SAR) mode altimetry over the marginal seas at Southeast Asia. Int. J. Remote Sens, 42:4, 1535-1555, DOI: 10.1080/01431161.2020.1836427.10.1080/01431161.2020.1836427Search in Google Scholar

Jahanmard V., Delpeche-Ellmann N., and Ellmann A. Realistic dynamic topography through coupling geoid and hydrodynamic models of the Baltic Sea. Cont. Shelf Res., 222, 104421. in Google Scholar

Jekeli C., 2006. Geometric Reference System in Geodesy. Ohio State University: Columbus, Division of Geodesy and Geospatial Science School of Earth. in Google Scholar

Kollo K., and Ellmann A., 2019. Geodetic Reconciliation of Tide Gauge Network in Estonia. Geophysica, 54(1), 27–38. in Google Scholar

Lagemaa P., 2012. Operational Forecasting in Estonian Marine Waters. TUT Press, 128.Search in Google Scholar

Lagemaa P., Elken J., and Kõuts T., 2011. Operational sea level forecasting in Estonia. Estonian J. Eng., 17(4), 301–331. in Google Scholar

Liibusk A., Kall T., Rikka S., Uiboupin R., Suursaar Ü., and Tseng K.-H., (2020). Validation of Copernicus Sea Level Altimetry Products in the Baltic Sea and Estonian Lakes. Remote Sens., 12 (24), 4062. DOI: 10.3390/rs1224406210.3390/rs12244062Search in Google Scholar

Märdla S., Ågren J., Strykowski G., Oja T., Ellmann A., Forsberg R., Bilker-Koivula M., Omang O., Paršeliūnas E., Liepinš I., and Kaminskis J., 2017. From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region. Mar. Geod., 40(6), 416–453. in Google Scholar

Müller F., Dettmering D., Bosch W., and Seitz F., 2017. Monitoring the Arctic Seas: How Satellite Altimetry Can Be Used to Detect Open Water in Sea-Ice Regions. Remote Sens., 9(6), 551. in Google Scholar

Müller F. L., 2020. User Manual Along-Track Data Baltic+ SEAL Project: ESA AO/1-9172/17/I-BG-BALTIC+ (Sea Level) Internal Dataset 2 (Update).Search in Google Scholar

National Geodetic Survey (NGS)., 2013. The National Geodetic Survey Ten Year Strategic Plan, 2013-2023: Positioning America for the Future. in Google Scholar

Normandin C., Frappart F., Diepkilé A. T., Marieu V., Mougin E., Blarel F., Lubac B., Braquet N., and Ba A., 2018. Evolution of the Performances of Radar Altimetry Missions from ERS-2 to Sentinel-3A over the Inner Niger Delta. Remote Sens., 10(6), 833. in Google Scholar

Omstedt A., and Hansson D., 2006. The Baltic Sea ocean climate system memory and response to changes in the water and heat balance components. Cont. Shelf Res., 26(2), 236–251. in Google Scholar

Passaro M., Cipollini P., Vignudelli S., Quartly G. D., and Snaith H. M, 2014. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ., 145, 173–189. in Google Scholar

Passaro M., Rose S. K., Andersen O. B., Boergens E., Calafat F. M., Dettmering D., and Benveniste J., 2018. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sens. Environ., 211, 456–471. in Google Scholar

Passaro M., Müller F., and Dettmering D., 2020a. Baltic+ SEAL: Algorithm Theoretical Baseline Document (ATBD), Version 2.1. Technical report delivered under the Baltic+ SEAL project. in Google Scholar

Passaro et al. 2020b. Baltic+ SEAL: Product Handbook, Version X.X. User manual delivered under the Baltic+ SEAL project. [Available in February, 2021].10.5270/esa.BalticSEAL.PH1.1Search in Google Scholar

Rautiainen L., Särkkä J., Tuomi L., Müller F., and Passaro M., 2020. Baltic+ SEAL: Validation Report, Version 2.2 Technical report delivered under the Baltic+ SEAL project. in Google Scholar

Ray C., Martin-Puig C., Clarizia M. P., Ruffini G., Dinardo S., Gommenginger C., and Benveniste J., 2015. SAR altimeter backscattered waveform model. IEEE Trans Geosci Remote Sens, 53(2), 911–919. in Google Scholar

Roblou L., Lyard F., le Henaff M., and Maraldi C., 2007. X-track, a new processing tool for altimetry in coastal oceans. International Geo-science and Remote Sensing Symposium (IGARSS), 5129–5133. in Google Scholar

Roemmich D., Woodworth P., Jevrejeva S., Purkey S., Lankhorst M, Send U, and Nikolai Maximenko N., 2017. In situ observations needed to complement, validate, and interpret satellite altimetry. In Stammer D., and Cazenave A., (Eds.), Satellite altimetry over oceans and land surfaces (pp. 113–148). CRC Press. in Google Scholar

Rulent J., Calafat FM., Banks CJ., Bricheno LM., Gommenginger C., Green JAM., Haigh ID., Lewis H., and Martin ACH., 2020. Comparing Water Level Estimation in Coastal and Shelf Seas From Satellite Altimetry and Numerical Models. Front. Mar. Sci. 7:549467. doi: 10.3389/fmars.2020.549467.10.3389/fmars.2020.549467Search in Google Scholar

Slobbe D. C., Klees R., and Gunter B. C., 2014. Realization of a consistent set of vertical reference surfaces in coastal areas. J. Geod, 88(6), 601–615. in Google Scholar

Soomere T., Behrens A., Tuomi L., Nielsen JW., 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat Hazards Earth Syst. Sci 8(1), 37–46. in Google Scholar

Thibaut P., Labroue S., Ablain M., Faugere Y., and Zanife O.-Z., 2006. Evaluation of the Jason-1 ground retracking algorithm. Ocean Surface Topography Science Team (OSTST) Meeting. in Google Scholar

Thibaut P., Poisson J. C., Bronner E., and Picot N., 2010. Relative Performance of the MLE3 and MLE4 Retracking Algorithms on Jason-2 Altimeter Waveforms. Mar. Geod., 33(sup1), 317–335. in Google Scholar

Véronneau M., and Huang J., 2016. The Canadian geodetic vertical datum of 2013 (CGVD2013). Geomatica, 70(1), 9–19. in Google Scholar

Vignudelli S., Snaith H. M., Lyard F., Cipollini P., Venuti F., Birol F., Bouffard J., and Roblou L., 2006. Satellite radar altimetry from open ocean to coasts: challenges and perspectives. In Frouin R. J., Agarwal V. K., Kawamura H., Nayak S., and Pan D., (Eds.), Proceedings of 5th Society of Photo-Optical Instrumentation Engineers (SPIE) Asia-Pacific remote sensing symposium (Vol. 6406, pp. 1–12). SPIE Asia-Pacific Remote Sensing. in Google Scholar

Received: 2021-01-14
Accepted: 2021-07-04
Published Online: 2021-09-17

© 2021 M. Mostafavi et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 29.11.2022 from
Scroll Up Arrow