Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 15, 2014

Clinical and molecular studies related to bone metabolism in patients with congenital adrenal hyperplasia

  • Silvia Martín , Liliana Muñoz , Adriana Pérez , Gabriela Sobrero , Gabriela Picotto , Mariana Ochetti , Agata Carpentieri , Liliana Silvano , Gabriela Díaz de Barboza , Malvina Signorino , Casilda Rupérez , Patricia Bertolotto , María Rosa Ulla , Claudia Pellizas , María Montesinos , Nori Tolosa de Talamoni EMAIL logo and Mirta Miras

Abstract

Patients with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency need glucocorticoid (GC) therapy, which alters bone mineral metabolism. We analyze clinical and biochemical parameters and different polymorphisms of candidate genes associated with bone mineral density (BMD) in CAH patients. The CAH patients treated with GC and healthy controls were studied. Anthropometric parameters, biochemical markers of bone turnover, and BMD were evaluated. Polymerase chain reaction technique was used to genotype different candidate genes. The 192-192 genotype frequency (IGF-I) was lower in poorly controlled patients than that from controls. In CAH patients, FF genotype (vitamin D receptor, VDR) correlated with lower lumbar spine BMD and there was a significant association between the 0-0 genotype (IGF-I) and high values of β-CrossLaps and a low total BMD. This study contributes to understanding of the association of genetic determinants of BMD with the variable response to GC treatment in CAH patients and demonstrates the usefulness of these genetic polymorphisms.


Corresponding author: Prof. Dr. Nori Tolosa de Talamoni, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), (5000) Córdoba, Argentina, Phone: +54 351 4333024 Int 121, Fax: +54 351 4333072, E-mail:

Acknowledgments

This work was supported by a Grant from FONCYT- UNC (PICTO 2005-35960) (Dr. N.T.de T.). Prof. Dr. Tolosa de Talamoni, Dr. Picotto, and Dr. Carpentieri are members of the Investigator Career from CONICET.

References

1. Speiser PW, White PG. Congenital adrenal hyperplasia. N Engl J Med 2003;349:776–88.10.1056/NEJMra021561Search in Google Scholar PubMed

2. Gallagher MP, Levine LS, Oberfield SE. A review of the effects of therapy on growth and bone mineralization in children with congenital adrenal hyperplasia. Growth Horm IGF Res 2005;15:S26–30.10.1016/j.ghir.2005.06.006Search in Google Scholar PubMed

3. Hoepffner W, Kaufhold A, Willgerodt H, Keller E. Patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency can achieve their target height: the Leipzig experience. Horm Res 2008;70:42–50.10.1159/000129677Search in Google Scholar PubMed

4. Lin-Su K, New M. Effects of adrenal steroids on bone metabolism of children with congenital adrenal hyperplasia. Ann NY Acad Sci 2007;1117:345–51.10.1196/annals.1402.040Search in Google Scholar PubMed

5. Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab 2006;17:144–9.10.1016/j.tem.2006.03.009Search in Google Scholar PubMed

6. Cameron FJ, Kaymakci B, Byrt EA, Ebeling PR, Warne GL, et al. Bone mineral density and body composition in congenital adrenal hyperplasia. J Clin Endocrinol Metab 1995;80:2238–43.Search in Google Scholar

7. Sciannamblo M, Russo G, Cuccato D, Chiumello G, Mora S. Reduced bone mineral density and increased bone metabolism rate in young adult patients with 21-hydroxylase deficiency. J Clin Endocrinol Metab 2006;91:4453–58.10.1210/jc.2005-2823Search in Google Scholar PubMed

8. Hargitai G, Hosszú E, Halász Z, Sólyom J. Serum osteocalcin and insulin-like growth factor levels in children with congenital adrenal hyperplasia. Horm Res 1999;52:131–9.10.1159/000023449Search in Google Scholar PubMed

9. Girgis R, Winter J. The effects of glucocorticoid replacement therapy on growth, bone mineral density and bone turnover markers in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 1997;82:3926–9.10.1210/jcem.82.12.4320Search in Google Scholar PubMed

10. Massart F, Marcucci G, Brandi ML. Pharmacogenetics of bone treatmens: the VDR and ERalpha gene story. Pharmacogenomics 2008;9:733–46.10.2217/14622416.9.6.733Search in Google Scholar PubMed

11. Fleury I, Beaulieu P, Primeau M, Labuda D, Sinnett D, et al. Characterization of the BclI polymorphism in the glucocorticoid receptor gene. Clin Chem 2003;49:1528–31.10.1373/49.9.1528Search in Google Scholar PubMed

12. Koetz KR, van Rossum EF, Ventz M, Diederich S, Quinkler M. BclI polymorphism of the GCR gene is associated with increased bone resorption in patients on glucocorticoid replacement therapy. Clin Endocrinol (Oxf) 2013;78:831–7.10.1111/cen.12096Search in Google Scholar

13. Miyao M, Hosoi T, Inoue S, Hoshino S, Shiraki M, et al. Polymorphism of insulin-like growth factor I gene and bone mineral density. Calcif Tissue Int 1998;63:306–11.10.1007/s002239900532Search in Google Scholar

14. Cetinkaya S, Kara C. The effect of glucocorticoid replacement therapy on bone mineral density in children with congenital adrenal hyperplasia. J Pediatr Endocrinol Metab 2011;24:265–9.10.1515/jpem.2011.189Search in Google Scholar

15. Zanchetta J, Plotkin L, Alvarez Figueira M. Bone mass in children: normative values for the 2-20 year-old population. Bone 1995;6:393S–9S.10.1016/8756-3282(95)00082-OSearch in Google Scholar

16. Silvano L, Miras M, Perez A, Picotto G, Diaz de Barboza G, et al. Comparative analysis of clinical, biochemical and genetic aspects associated with bone mineral density in small for gestational age children. J Pediatr Endocrinol Metab 2011;24:511–17.10.1515/jpem.2011.196Search in Google Scholar PubMed

17. Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989;44:388–96.Search in Google Scholar

18. Gergics P, Patocs A, Majnik J, Balogh K, Szappanos A, et al. Detection of the Bcl I polymorphism of the glucocorticoid receptor gene by single-tube allele-specific polymerase chain reaction. J Steroid Biochem Mol Biol 2006;100:161–6.10.1016/j.jsbmb.2006.04.004Search in Google Scholar PubMed

19. Nebesio TD, Eugster EA. Growth and reproductive outcomes in congenital adrenal hyperplasia. Int J Endocrinol 2010;298937. doi: 10.1155/2010/298937.10.1155/2010/298937Search in Google Scholar PubMed PubMed Central

20. Martín S, Muñoz L, Pérez A, Sobrero G, Picotto G, et al. Clinical, molecular and bone metabolism studies in patients with congenital adrenal hyperplasia. Bone 2011;48:S284.10.1016/j.bone.2011.03.724Search in Google Scholar

21. Guercio G, Rivarola MA, Chaler E, Maceiras M, Belgorosky A. Hydrocortisone treatment in girls with congenital adrenal hyperplasia inhibits serum dehydroepiandrosterone sulfate and affects the GH-IGF-I system. J Pediatr Endocrinol Metab 2009;22:255–61.10.1515/JPEM.2009.22.3.255Search in Google Scholar

22. Cunha HM, Elias LL, Camacho-Hubner C, Moreira AC, Martinelli CE Jr. Different states of clinical control are associated with changes in IGF-I and IGFBPs in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin Endocrinol 2004;61:94–101.10.1111/j.1365-2265.2004.02075.xSearch in Google Scholar PubMed

23. Van der Kamp HJ, Otten BJ, Buitenweg N, De Muinck Keizer-Schrama SM, Oostdijk W, et al. Longitudinal analysis of growth and puberty in 21-hydroxylase deficiency patients. Arch Dis Child 2002;87:139–44.10.1136/adc.87.2.139Search in Google Scholar PubMed PubMed Central

24. Stikkelbroeck NM, Oyen WJ, van der Wilt GJ, Hermus AR, Otten BJ. Normal bone mineral density and lean body mass, but increased fat mass, in young adult patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2003;88:1036–42.10.1210/jc.2002-021074Search in Google Scholar PubMed

25. Chakhtoura Z, Bachelot A, Samara-Boustani D, Ruiz JC, Donadille B, et al. Impact of total cumulative glucocorticoid dose on bone mineral density in patients with 21-hydroxylase deficiency. Eur J Endocrinol 2008;158:879–87.10.1530/EJE-07-0887Search in Google Scholar PubMed

26. King JA, Wisniewski AB, Bankowski BJ, Carson KA, Zacur HA, et al. Long-term corticosteroid replacement and bone mineral density in adult women with classical congenital adrenal hyperplasia. J Clin Endocrinol Metab 2006;91:865–9.10.1210/jc.2005-0745Search in Google Scholar PubMed

27. Bachelot A, Plu-Bureau G, Thibaud E, Laborde K, Pinto G, et al. Long-term outcome of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm Res 2007;67:268–76.10.1159/000098017Search in Google Scholar PubMed

28. van Rossum EF, Lamberts SW. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog Horm Res 2004;59:333–57.10.1210/rp.59.1.333Search in Google Scholar PubMed

29. Szappanos A, Patócs A, Tõke J, Boyle B, Sereg M, et al. BclI polymorphism of the glucocorticoid receptor gene is associated with decreased bone mineral density in patients with endogenous hypercortisolism. Clin Endocrinol (Oxf) 2009;71:636–43.10.1111/j.1365-2265.2009.03528.xSearch in Google Scholar PubMed

30. Willing MC, Torner JC, Burns TL, Janz KF, Marshall T, et al. Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa bone development study. Osteoporosis Int 2003;14:650–8.10.1007/s00198-003-1416-1Search in Google Scholar PubMed

31. Sainz J, Van Tornout J, Sayre J, Kaufman F, Gilsanz V. Association of collagen type 1 α1 gene polymorphism with bone density in early childhood. J Clin Endocrinol Metab 1999;84:853–5.Search in Google Scholar

32. Suuriniemi M, Kovanen V, Mahonen A, Alén M, Wang Q, et al. Colia1 SP1 polymorphism associates with bone density in early puberty. Bone 2006;39:591–7.10.1016/j.bone.2006.02.053Search in Google Scholar PubMed

33. Ralston SH, Uitterlinden AG, Brandi ML, Balcells S, Langdahl BL, et al. Large-scale evidence for the effect of the COLIA1 SP1polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med 2006;3:e90.10.1371/journal.pmed.0030090Search in Google Scholar PubMed PubMed Central

34. Peralta López M, Centeno V, Miras M, Silvano L, Pérez A, et al. Vitamin D receptor genotypes are associated with bone mass in patients with Turner syndrome. J Pediatr Endocr Metab 2011;24:307–12.Search in Google Scholar

35. Seldin DW, Esser PD, Alderson PO. Comparison of bone density measurements from different skeletal sites. J Nucl Med 1988;29:168–73.Search in Google Scholar

36. Abrahamsen B1, Stilgren LS, Hermann AP, Tofteng CL, Bärenholdt O, et al. Discordance between changes in bone mineral density measured at different skeletal sites in perimenopausal women–implications for assessment of bone loss and response to therapy: the Danish Osteoporosis Prevention Study. J Bone Miner Res 2001;16:1212–19.10.1359/jbmr.2001.16.7.1212Search in Google Scholar PubMed

37. Gennari L, De Paola V, Merlotti D, Martini G, Nuti R. Steroid hormone receptor gene polymorphisms and osteoporosis: a pharmacogenomic review. Expert Opin Pharmacother 2007;8:537–53.10.1517/14656566.8.5.537Search in Google Scholar PubMed

38. Rietveld I, Janssen JA, van Rossum EF, Houwing-Duistermaat JJ, Rivadeneira F, et al. A polymorphic CA repeat in the IGF-I gene is associated with gender-specific differences in body height, but has no effect on the secular trend in body height. Clin Endocrinol 2004;61:195–03.10.1111/j.1365-2265.2004.02078.xSearch in Google Scholar PubMed

39. Rivadeneira F, Houwing-Duistermaat JJ, Vaessen N, Vergeer-Drop JM, Hofman A, et al. Association between an insulin-like growth factor I gene promoter polymorphism and bone mineral density in the elderly: the Rotterdam Study. J Clin Endocrinol Metab 2003;88:3878–84.10.1210/jc.2002-021813Search in Google Scholar PubMed

Received: 2014-2-27
Accepted: 2014-6-13
Published Online: 2014-7-15
Published in Print: 2014-11-1

©2014 by De Gruyter

Downloaded on 8.3.2024 from https://www.degruyter.com/document/doi/10.1515/jpem-2014-0104/html
Scroll to top button