Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 5, 2019

Nutrition and medical support during pregnancy and lactation in women with inborn errors of intermediary metabolism disorders (IEMDs)

Penelope D. Manta-Vogli, Kleopatra H. Schulpis, Yannis Dotsikas and Yannis L. Loukas

Abstract

The establishment of expanded newborn screening (NBS) not only results in the early diagnosis and treatment of neonates with inborn errors of intermediary metabolism disorders (IEMDs) but also helps the affected females to reach the reproductive age under medical and dietetic support, as well as to give birth to normal infants. In this review, we aimed to focus on laboratory investigation tests, dietetic management and medical support for most known IEMD pregnant and lactating women, such as those suffering from aminoacidopathies, carbohydrate metabolic diseases and fatty acid (FAO) oxidation disorders.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: None declared.

References

1. Loukas YL, Soumelas G-S, Dotsikas Y, Georgiou V, Molou E, et al. Expanded newborn screening in Greece: 30 months of experience. J Inherit Metab Dis 2010;33:S341–8.10.1007/s10545-010-9181-8Search in Google Scholar PubMed

2. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60:49–74.10.1016/j.pcl.2012.10.002Search in Google Scholar PubMed PubMed Central

3. Lubetzky R, Sever O, Mimouni FB, Mandel D. Human milk macronutrients content: effect of advanced maternal age. Breastfeed Med 2015;10:433–6.10.1089/bfm.2015.0072Search in Google Scholar PubMed

4. Dritsakou K, Liosis G, Valsami G, Polychronopoulos E, Skouroliakou M. The impact of maternal- and neonatal-associated factors on human milk’s macronutrients and energy. J Matern Fetal Neonatal Med 2017;30:1302–8.10.1080/14767058.2016.1212329Search in Google Scholar PubMed

5. Van Beusekom CM, Zeegers TA, Martini IA, Velvis HJ, Visser GH, et al. Milk of patients with tightly controlled insulin-dependent diabetes mellitus has normal macronutrient and fatty acid composition. Am J Clin Nutr 1993;57:938–43.10.1093/ajcn/57.6.938Search in Google Scholar PubMed

6. Chang N, Jung JA, Kim H, Jo A, Kang S, et al. Macronutrient composition of human milk from Korean mothers of full term infants born at 37–42 gestational weeks. Nutr Res Pract 2015;9:433–8.10.4162/nrp.2015.9.4.433Search in Google Scholar PubMed PubMed Central

7. Sánchez CL, Cubero J, Sánchez J, Chanclón B, Rivero M, et al. The possible role of human milk nucleotides as sleep inducers. Nutr Neurosci 2009;12:2–8.10.1179/147683009X388922Search in Google Scholar PubMed

8. Khan S, Prime DK, Hepworth AR, Lai CT, Trengove NJ, et al. Investigation of short-term variations in term breast milk composition during repeated breast expression sessions. J Hum Lact 2013;29:196–204.10.1177/0890334412470213Search in Google Scholar PubMed

9. Pines N, Mandel D, Mimouni FB, Moran Lev H, Mangel L, et al. The effect of between-breast differences on human milk macronutrients content. J Perinatol 2016;36:549–51.10.1038/jp.2016.17Search in Google Scholar PubMed

10. Gidrewicz DA, Fenton TR. A systematic review and meta-analysis of the nutrient content of preterm and term breastmilk. BMC Pediatrics 2014;14:1–14.Search in Google Scholar

11. Kolasa KM, Firnhaber G, Haven K. Diet for a healthy lactating woman. Clin Obstet Gynecol 2015;58:893–901.10.1097/GRF.0000000000000144Search in Google Scholar PubMed

12. Allen LH. B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Adv Nutr 2012;3:362–9.10.3945/an.111.001172Search in Google Scholar

13. Otten JJ, Hellwig P, Meyers LD, editors. Dietary reference intakes. The essential guide to nutrient requirements. Washington, DC: National Academies Press; 2006.Search in Google Scholar

14. Institute of Medicine (US) Committee on Nutritional Status during Pregnancy and Lactation. Milk composition. In: Nutrition during lactation. Washington (DC): National Academies Press; 1991:113–52.Search in Google Scholar

15. Keikha M, Bahreynian M, Saleki M, Kelishadi R. Macro- and micronutrients of human milk composition: are they related to maternal diet? A comprehensive systematic review. Breastfeed Med 2017;12:517–27.10.1089/bfm.2017.0048Search in Google Scholar

16. Robert M, Rocha JC, van Rijn M, Ahring K, Belanger-Quintana A, et al. Micronutrient status in phenylketonuria. Mol Genet Metab 2013;110:S6–17.10.1016/j.ymgme.2013.09.009Search in Google Scholar

17. Miras A, Boveda MD, Leis MR, Mera A, Aldamiz-Echevarria L, et al. Risk factors for developing mineral bone disease in phenylketonuric patients. Mol Genet Metab 2013;108:149–54.10.1016/j.ymgme.2012.12.008Search in Google Scholar

18. Koletzko B, Beblo S, Demmelmair H, Hanebutt FL. Omega-3 LC-PUFA supply and neurological outcomes in children with phenylketonuria (PKU). J Pediatr Gastroenterol Nutr 2009;48:S2–7.10.1097/MPG.0b013e3181977399Search in Google Scholar

19. Schulpis KH, Tsakiris S, Karikas GA, Moukas M, Behrakis P. Effect of diet on plasma total antioxidant status in phenylketonuric patients. Eur J Clin Nutr 2003;57:383–7.10.1038/sj.ejcn.1601529Search in Google Scholar

20. Murphy E. Pregnancy in women with inherited metabolic disease. Obstet Med 2015;8:61–7.10.1177/1753495X15576442Search in Google Scholar

21. van Wegberg AM, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 2017;12:162.10.1186/s13023-017-0685-2Search in Google Scholar

22. Manta-Vogli PD, Dotsikas Y, Loukas YL, Schulpis KH. The phenylketonuria patient: a recent dietetic therapeutic approach. Nutr Neurosci 2018; in press doi: 10.1080/1028415X.2018.1538196.Search in Google Scholar

23. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet 2010;376:1417–27.10.1016/S0140-6736(10)60961-0Search in Google Scholar

24. Feillet F, Muntau AC, Debray FG, Lotz-Havla AS, Puchwein-Schwepcke A, et al. Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J Inherit Metab Dis 2014;37:753–62.10.1007/s10545-014-9716-5Search in Google Scholar

25. Grange DK, Hillman RE, Burton BK, Yano S, Vockley J, et al. Sapropterin dihydrochloride use in pregnant women with phenylketonuria: an interim report of the PKU MOMS sub-registry. Mol Genet Metab 2014;112:9–16.10.1016/j.ymgme.2014.02.016Search in Google Scholar

26. Sakamoto O, Arai-Ichinoi N, Murayama K, Kure S. Successful control of maternal phenylketonuria by tetrahydrobiopterin. Pediatr Int 2018;60:985–6.10.1111/ped.13678Search in Google Scholar

27. Trefz FK, Muntau AC, Lagler FB, Moreau F, Alm J, et al. The Kuvan(®) adult maternal paediatric European registry (KAMPER) multinational observational study: baseline and 1-year data in Phenylketonuria patients responsive to Sapropterin. JIMD Rep 2015;23:35–43.10.1007/8904_2015_425Search in Google Scholar

28. Prick BW, Hop WC, Duvekot JJ. Maternal phenylketonuria and hyperphenylalaninemia in pregnancy: pregnancy complications and neonatal sequelae in untreated and treated pregnancies. Am J Clin Nutr 2012;95:374–82.10.3945/ajcn.110.009456Search in Google Scholar

29. Maillot F, Cook P, Lilburn M, Lee PJ. A practical approach to maternal phenylke-tonuria management. J Inherit Metab Dis 2007;30:198–201.10.1007/s10545-007-0436-ySearch in Google Scholar

30. Impad A, Bhutta ZA. Maternal nutrition and birth outcomes: effect of balanced protein-energy supplementation. Pediatr Perinat Epidemiol 2012;26:178–90.10.1111/j.1365-3016.2012.01308.xSearch in Google Scholar

31. Hanson MA, Bardsley A, De-Regil LM, Moore SE, Oken E, et al. The international federation of gynecology and obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int J Gynaecol Obstet 2015;131:S213–53.10.1016/S0020-7292(15)30034-5Search in Google Scholar

32. Acosta PB, Matalon KM, Castiglioni L, Rohr FJ, Wenz E, et al. Intake of major nutrients by women in the Maternal Phenylketonuria (MPKU) Study and effects on plasma phenylalanine concentrations. Am J Clin Nutr 2001;73:792–6.10.1093/ajcn/73.4.792Search in Google Scholar PubMed

33. Matalon KM, Acosta PB, Azen C. Role of nutrition in pregnancy with phenylketonuria and birth defects. Pediatrics 2003;112:1534–6.10.1542/peds.112.S4.1534Search in Google Scholar

34. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med 2014;16:188–200.10.1038/gim.2013.157Search in Google Scholar PubMed

35. Maritz CM, Chan H, Ellerton C. Dietary management of maternal phenylketonuria: a practical guide. Zoetermeer, Netherlands: Nutricia Ltd., 2010:1–27.Search in Google Scholar

36. Coutts J. The dietary management of phenylketonuria. Proc Nutr Soc 1979;38:315–20.10.1079/PNS19790054Search in Google Scholar PubMed

37. WHO/FAO/UNU. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation in World Health Organization technical report series, 2007: 1–265.Search in Google Scholar

38. Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 2014;16:121–31.10.1038/gim.2013.179Search in Google Scholar PubMed PubMed Central

39. Rasmussen KM, Catalano PM, Yaktine AL. New guidelines for weight gain during pregnancy: what obstetrician/gynecologists should know. Curr Opin Obstet Gynecol 2009;21:521–6.10.1097/GCO.0b013e328332d24eSearch in Google Scholar PubMed PubMed Central

40. Vugteveen I, Hoeksma M, Monsen AL, Fokkema MR, Reijngoud DJ, et al. Serum vitamin B12 concentrations within reference values do not exclude functional vitamin B12 deficiency in PKU patients of various ages. Mol Genet Metab 2011;102:13–7.10.1016/j.ymgme.2010.07.004Search in Google Scholar PubMed

41. Moseley K, Koch R, Moser AB. Lipid status and long-chain polyunsaturated fatty acid concentrations in adults and adolescents with phenylketonuria on phenylalanine-restricted diet. J Inherit Metab Dis 2002;25:56–64.10.1023/A:1015142001578Search in Google Scholar

42. FAO/WHO/UNU. Human energy requirements. Report of a joint FAO/WHO/UNU expert consultation. October 17–24, 2001. Rome, Italy. Public Health Nutr 2004;8:929–1228.Search in Google Scholar

43. Dewey KG. Energy and protein requirements during lactation. Annu Rev Nutr 1997;17:19–36.10.1146/annurev.nutr.17.1.19Search in Google Scholar PubMed

44. Centers for Disease Control and Prevention. Barriers to dietary control among pregnant women with phenylketonuria–United States, 1998–2000. MMWR Morb Mortal Wkly Rep 2002;51: 117–20.Search in Google Scholar

45. Fox-Bacon C, McCamman S, Therou L, Moore W, Kipp DE. Maternal PKU and breastfeeding: case report of identical twin mothers. Clin Pediatr 1997;36:539–42.10.1177/000992289703600908Search in Google Scholar PubMed

46. Canadian Agency for Drugs and Technologies in Health. CADTH Canadian Drug Expert Committee final recommendation: sapropterin – resubmission, https://www.cadth.ca/sites/default/files/cdr/complete/SR0472_complete_Kuvan-Oct-28-16.pdf [Accessed 20 January 2019].Search in Google Scholar

47. Frazier DM, Allgeier C, Homer C, Marriage BJ, Ogata B, et al. Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab 2014;112:210–7.10.1016/j.ymgme.2014.05.006Search in Google Scholar PubMed

48. Wessel AE, Mogensen KM, Rohr F, Erick M, Neilan EG, et al. Management of a woman with maple syrup urine disease during pregnancy, delivery, and lactation. JPEN J Parenter Enteral Nutr 2015;39:875–9.10.1177/0148607114526451Search in Google Scholar PubMed

49. Van Calcar SC, Harding CO, Davidson SR, Barness LA, Wolff JA. Case reports of successful pregnancy in women with maple syrup urine disease and propionic acidemia. Am J Med Genet 1992;44:641–6.10.1002/ajmg.1320440523Search in Google Scholar PubMed

50. Brown J, Tchan M, Nayyar R. Maple syrup urine disease: tailoring a plan for pregnancy. J Matern Fetal Neonatal Med 2018;31:1663–6.10.1080/14767058.2017.1323328Search in Google Scholar PubMed

51. Tchan M, Westbrook M, Wilcox G, Cutler R, Smith N, et al. The management of pregnancy in maple syrup urine disease: experience with two patients. JIMD Rep 2013;10: 113–7.10.1007/8904_2013_212Search in Google Scholar PubMed PubMed Central

52. Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of Amino Acids during Pregnancy: nutritional support. J Matern Fetal Neonatal Med 2020;33:334–40. 10.1080/14767058.2018.1489795Search in Google Scholar PubMed

53. Grünert SC, Rosenbaum-Fabian S, Schumann A, Schwab KO, Mingirulli N, et al. Successful pregnancy in maple syrup urine disease: a case report and review of the literature. Nutr J 2018;17:51.10.1186/s12937-018-0357-7Search in Google Scholar PubMed PubMed Central

54. Picciano MF. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 2003;133:1997S–2002S.10.1093/jn/133.6.1997SSearch in Google Scholar PubMed

55. van Spronsen FJ, van Rijn M, Meyer U, Das AM. Dietary considerations in tyrosinemia type I. Adv Exp Med Biol 2017;959: 197–204.10.1007/978-3-319-55780-9_18Search in Google Scholar PubMed

56. Chinsky JM, Singh R, Ficicioglu C, van Karnebeek CD, Grompe M, et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 2017;19:1380.10.1038/gim.2017.101Search in Google Scholar PubMed PubMed Central

57. de Laet C, Dionisi-Vici C, Leonard JV, McKiernan P, Mitchell G, et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 2013;8:8.10.1186/1750-1172-8-8Search in Google Scholar PubMed PubMed Central

58. Mayorandan S, Meyer U, Gokcay G, Segarra NG, de Baulny HO, et al. Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis 2014;9:107.10.1186/s13023-014-0107-7Search in Google Scholar PubMed PubMed Central

59. Kassel R, Sprietsma L, Rudnick DA. Pregnancy in an NTBC-treated patient with hereditary tyrosinemia type I. J Pediatr Gastroenterol Nutr 2015;60:e5–7.10.1097/MPG.0b013e3182a27463Search in Google Scholar PubMed

60. Vanclooster A, Devlieger R, Meersseman W, Spraul A, Kerckhove KV, et al. Pregnancy during nitisinone treatment for tyrosinaemia type I: first human experience. JIMD Rep 2012;5:27–33.10.1007/8904_2011_88Search in Google Scholar PubMed PubMed Central

61. Francis DE, Kirby DM, Thompson GN. Maternal tyrosinaemia II: management and successful outcome. Eur J Pediatr 1992;151:196–9.10.1007/BF01954383Search in Google Scholar PubMed

62. Cerone R, Fantasia AR, Castellano E, Moresco L, Schiaffino MC, et al. Pregnancy and tyrosinaemia type II. J Inherit Metab Dis 2002;25:317–8.10.1023/A:1016558510123Search in Google Scholar

63. Fois AB, Borgogni P, Cioni M, Molinelli M, Frezzotti R, et al. Presentation of the data of the Italian Registry for oculocutaneous tyrosinaemia. J Inherit Metab Dis 1986;9:262–4.10.1007/978-94-009-4131-1_42Search in Google Scholar

64. Heylen E, Scherer G, Vincent M-F, Marie S, Fischer J, et al. Tyrosinemia Type III detected via neonatal screening: management and outcome. Mol Genet Metab 2012;107:605–7.10.1016/j.ymgme.2012.09.002Search in Google Scholar PubMed

65. Morris AA, Kožich V, Santra S, Andria G, Ben-Omran TI, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis 2017;40:49–74.10.1007/s10545-016-9979-0Search in Google Scholar PubMed PubMed Central

66. Langendonk JG, Roos JC, Angus L, Angus L, Williams M, et al. A series of pregnancies in women with inherited metabolic disease. J Inherit Metab Dis 2012;35:419–24.10.1007/s10545-011-9389-2Search in Google Scholar PubMed

67. Levy HL, Vargas JE, Waisbren SE, Kurczynski TW, Roeder ER, et al. Reproductive fitness in maternal homocystinuria due to cystathionine beta-synthase deficiency. J Inherit Metab Dis 2002;25:299–314.10.1023/A:1016502408305Search in Google Scholar

68. Calvert SM, Rand RJ. A successful pregnancy in a patient with homocystinuria and a previous near-fatal postpartum cavernous sinus thrombosis. Br J Obstet Gynaecol 1995;102:751–2.10.1111/j.1471-0528.1995.tb11437.xSearch in Google Scholar PubMed

69. Novy J, Ballhausen D, Bonafe L, Cairoli A, Angelillo-Scherrer A, et al. Recurrent postpartum cerebral sinus vein thrombosis as a presentation of cystathionine-beta-synthase deficiency. Thrombo Haemost 2010;103:871–3.10.1160/TH09-10-0737Search in Google Scholar PubMed

70. Yap S, Barry-Kinsella C, Naughten ER. Maternal pyridoxine non responsive homocystinuria: the role of dietary treatment and anticoagulation. Br J Obstet Gynaecol 2001;108:425–8.Search in Google Scholar

71. Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 2001;21:2080–5.10.1161/hq1201.100225Search in Google Scholar PubMed

72. Biasiutti FD, Lämmle B. Prevention of venous thromboembolism – in whom, when and how? Ther Umsch 1994;51663–70.Search in Google Scholar

73. Pierre G, Gissen P, Chakrapani A, McDonald A, Preece M, et al. Successful treatment of pyridoxine-unresponsive homocystinuria with betaine in pregnancy. J Inherit Metab Dis 2006;29:688–9.10.1007/s10545-006-0352-6Search in Google Scholar PubMed

74. Ritchie JW, Carson NA. Pregnancy and homocystinuria. J Obstet Gynaecol Br Commonw 1973;80:664–9.10.1111/j.1471-0528.1973.tb16046.xSearch in Google Scholar PubMed

75. Ituk U, Constantinescu OC, Allen TK, Small MJ, Habib AS. Peripartum management of two parturients with ornithine transcarbamylase deficiency. Int J Obstet Anesth 2012;21:90–3.10.1016/j.ijoa.2011.09.007Search in Google Scholar PubMed

76. Mendez-Figueroa H, Lamance K, Sutton VR, Aagaard-Tillery K, Van den Veyver I. Management of ornithine transcarbamylase deficiency in pregnancy. Am J Perinatol 2010;27:775–84.10.1055/s-0030-1254240Search in Google Scholar PubMed

77. Tihtonen K, Uotila J, Lähde J, Salo M, Keskinen P. Risk of hyperammonemic coma in the puerperium: two cases of women with diagnosed and undiagnosed deficiency of urea cycle enzymes. Acta Obstet Gynecol Scand 2010;89:404–6.10.3109/00016340903540646Search in Google Scholar PubMed

78. Haberle J, Vilaseca MA, Meli C, Rigoldi M, Jara F, et al. First manifestation of citrullinemia type I as differential diagnosis to postpartum psychosis in the puerperal period. Eur J Obstet Gynecol Reprod Biol 2010;149:228–9.10.1016/j.ejogrb.2009.11.014Search in Google Scholar PubMed

79. Kotani Y, Shiota M, Umemoto M, Hoshiai H. Carbamyl phosphate synthetase deficiency and post-patum hyperammonemia. Am J Obstet Gynecol 2010;203:e10–1.10.1016/j.ajog.2010.03.032Search in Google Scholar PubMed

80. Lamb S, Aye C, Murphy E, Mackillop L. Multidisciplinary management of ornithine transcarbamylase (OTC) deficiency in pregnancy: essential to prevent hyperammonemic complications. BMJ Case Rep 2013;2013:bcr2012007416.10.1136/bcr-2012-007416Search in Google Scholar PubMed PubMed Central

81. Stephens TV, Payne M, Ball RO, Pencharz PB, Elango R. Protein requirements of healthy pregnant women during early and late gestation are higher than current recommendations. J Nutr 2015;145:73–8.10.3945/jn.114.198622Search in Google Scholar PubMed

82. Haberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012;7:32.10.1186/1750-1172-7-32Search in Google Scholar PubMed PubMed Central

83. Sanjurjo P, Ruiz JI, Montejo M. Inborn errors of metabolism with a protein-restricted diet: effect on polyunsaturated fatty acids. J Inherit Metab Dis 1997;20:783–9.10.1023/A:1005367701176Search in Google Scholar

84. British Inherited Metabolic Disease Group. Emergency Guidelines for adults. http://www.bimdg.org.uk/guidelines/guidelines-adult.asp, accessed on June 22nd 2019.Search in Google Scholar

85. Lee B, Goss J. Long-term correction of urea cycle disorders. J Pediatr 2001;138:S62–71.10.1067/mpd.2001.111838Search in Google Scholar PubMed

86. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, et al. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 2007;356:2282–92.10.1056/NEJMoa066596Search in Google Scholar PubMed

87. Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic academia. Orphanet J Rare Dis 2014;9:130.10.1186/s13023-014-0130-8Search in Google Scholar PubMed PubMed Central

88. Deodato F, Rizzo C, Boenzi S, Baiocco F, Sabetta G, et al. Successful pregnancy in a woman with mut-methylmalonic acidaemia. J Inherit Metab Dis 2002;25:133–4.10.1023/A:1015632911801Search in Google Scholar

89. Raval DB, Merideth M, Sloan J, Braverman NE, Conway RL, et al. Methylmalonic Acidemia (MMA) in pregnancy: a case series and literature review. J Inherit Metab Dis 2015;38:839–46.10.1007/s10545-014-9802-8Search in Google Scholar PubMed PubMed Central

90. Wasserstein MP, Gaddipati S, Snyderman SE, Eddleman K, Desnick RJ, et al. Successful pregnancy in severe methylmalonic acidaemia. J Inherit Metab Dis 1999;22:788–94.10.1023/A:1005597722237Search in Google Scholar

91. Lee PJ. Pregnancy issues in inherited metabolic disorders. J Inherit Metab Dis 2006;29:311–6.10.1007/s10545-005-0252-1Search in Google Scholar PubMed

92. Shin YS. Glycogen storage disease: clinical, biochemical, and molecular heterogeneity. Semin Pediatr Neurol 2006;13:115–20.10.1016/j.spen.2006.06.007Search in Google Scholar

93. Goldberg T, Slonim AE. Nutrition therapy for hepatic glycogen storage diseases. Am Diet Assoc 1993;93:1423-3010.1016/0002-8223(93)92246-TSearch in Google Scholar

94. Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, et al. American College of Medical. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2014;16:e1.10.1038/gim.2014.128Search in Google Scholar

95. Martens DH, Rake JP, Schwarz M, Ullrich K, Weinstein DA, et al. Pregnancies in glycogen storage disease type IA. Am J Obstet Gynecol 2008;198:646.e1–7.10.1016/j.ajog.2007.11.050Search in Google Scholar

96. Terkivatan T, de Wilt JH, de Man RA, Ijzermans JN. Management of hepatocellular adenoma during pregnancy. Liver 2000;20:186–7.10.1034/j.1600-0676.2000.020002186.xSearch in Google Scholar

97. Ryan IP, Havel RJ, Laros RK Jr. Three consecutive pregnancies in a patient with glycogen storage disease type IA (von Gierke’s disease). Am J Obstet Gynecol 1994;170:1687–90.10.1016/S0002-9378(94)70342-6Search in Google Scholar

98. Dagli AI, Lee PJ, Correia CE, Rodriguez C, Bhattacharya K, et al. Pregnancy in glycogen storage disease type IB: gestational care and report of first successful deliveries. J Inherit Metab Dis 2010;33:S151–7.10.1007/s10545-010-9054-1Search in Google Scholar PubMed PubMed Central

99. Ramachandran R, Wedatilake Y, Caroline Coats C, Walker F, Elliott P, et al. Pregnancy and its management in women with GSD type III – a single centre experience. J Inherit Metab Dis 2012;35:245–51.10.1007/s10545-011-9384-7Search in Google Scholar PubMed

100. Petry CJ, Hales CN. Long-term effects on offspring of intrauterine exposure to deficits in nutrition. Hum Reprod Update 2000;6:578–86.10.1093/humupd/6.6.578Search in Google Scholar PubMed

101. Hutton RA, Macnab AJ, Rivers RP. Defect of platelet function associated with chronic hypoglycaemia. Arch Dis Child 1976;51:49–55.10.1136/adc.51.1.49Search in Google Scholar PubMed PubMed Central

102. Welling L, Bernstein LE, Berry GT, Burlina AB, Eyskens F, et al. International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis 2017;40:171–6.10.1007/s10545-016-9990-5Search in Google Scholar PubMed PubMed Central

103. Schulpis KH, Thodi G, Iakovou K, Chatzidaki M, Dotsikas Y, et al. Clinical evaluation and mutational analysis of GALK and GALE genes in patients with galactosemia in Greece: one novel mutation and two rare cases. J Pediatr Endocrinol Metab 2017;30:775–9.10.1515/jpem-2017-0065Search in Google Scholar PubMed

104. Schulpis KH, Thodi G, Chatzidaki M, Iakovou K, Molou E, et al. Rare cases of galactose metabolic disorders: identification of more than two mutations per patient. J Pediatr Endocrinol Metab 2017;30:1119–20.10.1515/jpem-2017-0263Search in Google Scholar PubMed

105. Schulpis KH, Thodi G, Iakovou K, Dotsikas Y, Molou E, et al. Identification of five mutations in a patient with galactose metabolic disorders. J Pediatr Endocrinol Metab 2018;31: 221–2.10.1515/jpem-2017-0438Search in Google Scholar PubMed

106. Gubbels CS, Land JA, Rubio-Gozalbo MS. Fertility and impact of pregnancies on the mother and child in classic galactosemia. Obstet Gynecol Surv 2008;63:334–43.10.1097/OGX.0b013e31816ff6c5Search in Google Scholar PubMed

107. Ng WG, Xu YK, Wong LJ, Kaufman FR, Buist NR, et al. Two adult galactosaemia females with normal ovarian function and identical GALT mutations (Q188R/R333G). J Inherit Metab Dis 2003;26:75–9.10.1023/A:1024039916476Search in Google Scholar

108. Briones P, Giros M, Martinez V. Second spontaneous pregnancy in a galactosaemic woman homozygous for the Q188R mutation. J Inherit Metab Dis 2001;24:79–80.10.1023/A:1005667024606Search in Google Scholar

109. Ohlsson A, Nasiell J, von Döbeln U. Pregnancy and lactation in a woman with classical galactosaemia heterozygous for p.Q188R and p.R333W. J Inherit Metab Dis 2007;30:105.10.1007/s10545-006-0383-zSearch in Google Scholar PubMed

110. Schadewaldt P, Hammen H-W, Kamalanathan L, Wendel U, Schwarz M, et al. Biochemical monitoring of pregnancy and breast feeding in five patients with classical galactosaemia – and review of the literature. Eur J Pediatr 2009;168: 721–9.10.1007/s00431-008-0832-9Search in Google Scholar PubMed

111. Janeiro P, Jotta R, Ramos R, Florindo C, Ventura FV, et al. Follow-up of fatty acid β-oxidation disorders in expanded newborn screening era. Eur J Pediatr 2019;178:387–94.10.1007/s00431-018-03315-2Search in Google Scholar PubMed

112. Spiekerkoetter U, Lindner M, Santer R, Wendel U, Schwarz M, et al. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 2009;32:488–97.10.1007/s10545-009-1125-9Search in Google Scholar PubMed

113. Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, et al. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 2010;33:555–61.10.1007/s10545-010-9188-1Search in Google Scholar PubMed

114. Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009;32: 498–505.10.1007/s10545-009-1126-8Search in Google Scholar PubMed

115. Arnold GL, VanHove J, Freedenberg D, Strauss A, Longo N, et al. A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2009;96:85–90.10.1016/j.ymgme.2008.09.008Search in Google Scholar PubMed PubMed Central

116. Potter BK, Hutton B, Clifford TJ, Pallone N, Smith M, et al. Establishing core outcome sets for phenylketonuria (PKU) and medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency in children: study protocol for systematic reviews and Delphi surveys. Trials 2017;18:603.10.1186/s13063-017-2327-3Search in Google Scholar PubMed PubMed Central

117. Mendez-Figueroa H, Shchelochkov OA, Shaibani A, Aagaard-Tillery K, Shinawi MS. Clinical and biochemical improvement of very long-chain acyl-CoA dehydrogenase deficiency in pregnancy. J Perinatol 2010;30:558–62.10.1038/jp.2009.198Search in Google Scholar PubMed

118. Wajner M, Amaral AU. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Biosci Rep 2015;36:e00281.10.1042/BSR20150240Search in Google Scholar PubMed PubMed Central

119. Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 2004;1033:30–41.10.1196/annals.1320.003Search in Google Scholar PubMed

120. Leydiker KB, Neidich JA, Lorey F, Barr EM, Puckett RL, et al. Maternal medium-chain acyl-CoA dehydrogenase deficiency identified by newborn screening. Mol Genet Metab 2011;103:92–5.10.1016/j.ymgme.2011.01.011Search in Google Scholar PubMed

121. Lee PJ, Harrison EL, Jones MG, Jones S, Leonard JV, et al. L-Carnitine and exercise tolerance in medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency: a pilot study. J Inherit Metab Dis 2005;28:141–52.10.1007/s10545-005-5262-5Search in Google Scholar PubMed

122. Derks TG, Touw CM, Ribas GS, Biancini GB, Vanzin CS, et al. Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2014;37:783–9.10.1007/s10545-014-9700-0Search in Google Scholar PubMed

123. Oey NA, den Boer ME, Ruiter JP, Wanders RJ, Duran M, et al. High activity of fatty acid oxidation enzymes in human placenta: implications for fetal-maternal disease. J Inherit Metab Dis 2003;26:385–92.10.1023/A:1025163204165Search in Google Scholar

124. Murata Y, Sugie H, Nishino I, Kondo T, Ito H. A primigravida with very-long-chain acyl-CoA dehydrogenase deficiency. Muscle Nerve 2014;49:295–6.10.1002/mus.24055Search in Google Scholar PubMed

Received: 2019-01-23
Accepted: 2019-09-20
Published Online: 2019-12-05
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston