Accessible Requires Authentication Published by De Gruyter August 18, 2021

Thorium-based CANDU qualification as plutonium burner

Qualifikation des Betriebs von Brennstoffen auf Thoriumbasis in CANDU Reaktoren zur Plutoniumverbrennung
R. Neacşa, A. Rizoiu and I. Prisecaru
From the journal Kerntechnik

Abstract

Converting the weapon grade Plutonium from the U.S.A., Russia, U.K. etc. to Mixed OXide fuel and using it in power reactors was seen as a feasible way to both dispose Plutonium and produce energy. Using Thorium-based fuels in CANDU has been investigated since early 1980’s, they were designed and tested in Canada as mixed ThO2-UO2 (both LEU and HEU) and mixed ThO2-PuO2, (both reactor- and weapons-grade) ([1]). In this respect, Thorium might also be seen as a valuable driver for weapon grade Plutonium annihilation. Our goal was to investigate ThO2-PuO2 MOX in the aim to propose a suitable fuel for the existing and future CANDU units in Romania. Both weapon grade and reactor grade Plutonium were considered as fissile drivers for Thorium. Since this is only an exploratory study, some key design parameters such as fuel pellet density and ThO2/PuO2 ratio were considered to span over a certain range imposed by MOX fuel fabrication technology and limited Plutonium availability. Eighteen fuel compositions were considered and cell calculations were performed for 37 and 43-element bundles using several computer codes.

Abstract

Die Umwandlung des waffenfähigen Plutoniums der USA, Russlands, Großbritanniens usw. in gemischten Oxid-Brennstoff und dessen Verwendung in Leistungsreaktoren wird als ein gangbarer Weg angesehen, sowohl Plutonium zu entsorgen als auch Energie zu erzeugen. Die Verwendung von Brennstoffen auf Thoriumbasis in CANDU wird seit Anfang der 1980er Jahre untersucht; sie wurden in Kanada als gemischtes ThO2-UO2 (sowohl LEU als auch HEU) und gemischtes ThO2-PuO2 (sowohl reaktor- als auch waffentauglich) ([1]) entworfen und getestet. In dieser Hinsicht könnte Thorium auch als wertvolle Antriebskraft für die waffengradige Plutoniumvernichtung angesehen werden. Unser Ziel war die Untersuchung von ThO2-PuO2-MOX um einen geeigneten Brennstoff für die bestehenden und künftigen CANDU-Einheiten in Rumänien vorzuschlagen. Sowohl waffen- als auch reaktortaugliches Plutonium wurde als spaltbare Antriebskraft für Thorium betrachtet. Da es sich hierbei nur um eine explorative Studie handelt, wurden einige wichtige Entwurfsparameter wie die Brennstoffpelletdichte und das ThO2/PuO2- Verhältnis über einen bestimmten Bereich betrachtet, der durch die MOX-Brennstoffherstellungstechnologie und die begrenzte Verfügbarkeit von Plutonium bedingt ist. Achtzehn Brennstoff-zusammensetzungen wurden in Betracht gezogen, und es wurden Zellberechnungen für 37- und 43-Element-Bündel unter Verwendung mehrerer Computercodes durchgeführt.

Acknowledgements

We gratefully acknowledge the useful advices of Dr. Iuliana Vişan and Mrs. Andreea Moise concerning the SERPENT results interpretation. Special thanks to Dr. Silviu Florea for the Linux workstation management. We highly appreciate the continuous support of Mr. Gheorghe Olteanu, head of the Fuel Performance Group in ICN, coordinator of the Nuclear Fuel research programme of RATEN (The Technologies for Nuclear Energy State Owned Company).

References

1 Chan, P. S. W.; Gagnon, M. J. N.; Boczar, P. G.; Ellis, R. J.; Verrall, R. A: CANDU· – A versatile reactor for plutonium disposition or actinide burning, AECL-11853, Chalk River Laboratories, Chalk River, Ontario, Canada, 1997, [Online]. Available https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/030/31030402.pdf?r=1 (2018) Search in Google Scholar

2 Rizoiu, A.; Horhoianu, G.; Prodea, I.: Using advanced fuel bundles in CANDU reactors, in IAEA-TECDOC-CD-1751, \PRESSURIZED HEAVY WATER REACTOR FUEL: INTEGRITY, PERFORMANCE AND ADVANCED CONCEPTS", INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria, 2014 [Online] Available https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1751_CD/PDF/Tecdoc-1751.pdf (2020) Search in Google Scholar

3 Prodea, I.; Maᵕrgeanu, C. A.; Rizoiu, A.; Olteanu, G.: INR recent contributions to thorium-based fuel using in CANDU reactors, in IAEATECDOC-CD-1751, \PRESSURIZED HEAVY WATER REACTOR FUEL: INTEGRITY, PERFORMANCE ANDADVANCED CONCEPTS", INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria, 2014 [Online] Available https://wwwpub.iaea.org/MTCD/Publications/PDF/TE_1751_CD/PDF/Tecdoc-1751.pdf (2020) Search in Google Scholar

4 Boczar, P. G.; Chan, P. S. W.; Dyck, G. R.; Ellis, R. J.; Jones, R. T.; Sullivan, J.D.; Taylor, P.: Thorium fuel-cycle studies for CANDU reactor, in IAEATECDOC-1319, \THORIUM FUEL UTILIZATION: OPTIONS AND TRENDS", INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna,Austria, 2002 [Online]Available http://www-pub.-iaea.org/MTCD/publications/PDF/te_1319_web.pdf (2020) Search in Google Scholar

5 Boczar, P. G.; Hopkins, J. R; Feinroth, H.; Luxat, J. C.: Plutonium dispositioning in CANDU, AECL-11429, Chalk River Laboratories, Chalk River, Ontario, Canada, 1995, [Online] Available at https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/032/270320-26.pdf?r=1 (2020) Search in Google Scholar

6 Şahin, S.; Yildiz, K.; Şahin, H. M.; Şahin, N.; Acir, A.: Increased fuel burn up in a CANDU thorium reactor using weapon grade plutonium, Nuclear Engineering and Design 236 (2006) [Online]Available https://www.sciencedirect.com/science/article/pii/S0029549306001312(2020) DOI:10.1016/j.nucengdes.2006.01.014 Search in Google Scholar

7 Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity, IAEA-TECDOC-1349, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, Austria, 2003 [Online] Available http://www-pub.iaea.org/MTCD/Publica-tions/PDF/te-1349_web (2020) Search in Google Scholar

8 Neacşa, R.; Rizoiu, A.; Prisecaru, I.: Improving CANDU performance by using uranium – thorium mixed oxide fuel, KERNTECH-NIK 83, vol. 2, Carl Hanser Verlag GmbH & Co. KG, 2018, ISSN 0932–3902, DOI:10.3139/124.110848 Search in Google Scholar

9 Rouben, B.: Reactor Statics, in The Essential CANDU, McMaster University, Hamilton, Ontario, Canada, 2014 Search in Google Scholar

10 IAEA: In-core fuel management benchmarks for PHWRS, IAEA-TECDOC-887, INTERNATIONAL ATOMIC ENERGYAGENCY, Vienna, Austria, 1996 [Online] Available http://www-pub.iaea.org/books/IAEABooks/5536/in-core-fuel-management-benchmarks-for-phwrs (2020) Search in Google Scholar

11 Marleau, G.; Hébert, A.; Roy, R.: A user guide for DRAGON version5, IGE-335, Institute de Génie Nucléaire, École Polytechnique de Montréal, Canada, 2017 [Online] Available http://www.polymt.-ca/nucleaire/en/logiciels (2020) Search in Google Scholar

12 Holbert, K. E.: EEE 460 Nuclear power engineering course syllabus, Arizona State University, Tempe, AZ, U.S.A, 2014 [Online] Available http://holbert.faculty.asu.edu/eee460/NumberDensity.pdf (2020) Search in Google Scholar

13 OECD/NEA: WIMS-D5, OECD/NEA Data Bank Documentation, Package ID No. 1507/02 [Online] Available: http://www.nea.fr/html/dbprog (2020) Search in Google Scholar

14 Leszczynski, F.; López Aldama, D.; Trkov; A.: WIMS-D library update: final report of a coordinated research project, STI/PUB/1264, International Atomic Energy Agency, Vienna, Austria [Online] Available: http://www-nds.iaea.org/wimsd (2020) Search in Google Scholar

15 Leppänen, J.: SERPENT – A continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, VTT Technical Research Centre, Espoo, Finland (2015) Search in Google Scholar

16 http://gcc.gnu.org (2020) Search in Google Scholar

17 https://gcc.gnu.org/fortran (2020) Search in Google Scholar

18 Taylor, J. R.: An Introduction to Error Analysis, 2nd Edition, 1997, [Online]. Available https://archive.org/details/TaylorJ.R.Introduc-tionToErrorAnalysis2ed (2020) Search in Google Scholar

19 https://xubuntu.org/release/18–04 (2020) Search in Google Scholar

20 https://www.open-mpi.org/software/ompi/v4.0 (2020) Search in Google Scholar

21 Thorium Update, 2017, [Online]. Available https://www.world-nu-clear.org/information-library/current-and-future-generation/thorium.aspx (2020) Search in Google Scholar

22 EC6 and CANMOX. Advanced Fuel Technology for Plutonium Reuse, 2015 [Online] Available https://www.snclavalin.com/*/media/Files/S/SNC-Lavalin/download-centre/en/brochure/ec6-and-canmox-advanced-fuel-technology-en.pdf Search in Google Scholar

23 Mixed Oxide (MOX) Fuel, 2017, [Online]. Available https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/mixed-oxide-fuel-mox.aspx (2020) Search in Google Scholar

24 Fissile material stocks, 2017 [Online] Available http://fissilematerials.org/(2020) Search in Google Scholar

25 MilitaryWarheads as a Source of Nuclear Fuel, 2017, [Online]. Available https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/uranium-resources/military-warheads-as-a-source-of-nuclear-fuel.aspx (2020) Search in Google Scholar

26 Lam, S.: Economics of Thorium and Uranium Reactors, in The Economics of Oil and Energy, April 30, 2013 [Online] Available http://pages.hmc.edu/evans/LamThorium.pdf Search in Google Scholar

27 Morel, A.: Price of Plutonium, 2008 [Online] Available https://hy-pertextbook.com/facts/2008/AndrewMorel.shtml Search in Google Scholar

Received: 2020-03-04
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany