Accessible Requires Authentication Published by De Gruyter August 18, 2021

Large eddy fire simulation applications from nuclear industry

Ausgewählte Berechnungen unter Verwendung des Large-Eddy-Turbulenzmodells für Brandszenarien in der Nuklearindustrie
P. K. Sharma, V. Verma, J. Chattopadhyay and G. Vinod
From the journal Kerntechnik

Abstract

A computational study has been carried out for predicting the behaviour of a pool fire source using the field-model based code Fire Dynamics Simulator (FDS). Time dependent velocity and temperature fields are predicted along with the resulting changes in the plume structure and its width. Firstly, a grid study was performed to find out the best grid size for this purpose. Then calculations were done which showed a very good agreement with earlier reported experimental based correlations for the temperature of the plume region. These studies have been extended to use this field-model based tools for modelling particular separate effect phenomena like puffing frequency and to validate against experimental data. There are several applications in nuclear industry like room fires, wildland fires, smoke or ash disposal, hydrogen transport in nuclear reactor containment, natural convection in building flows etc. In this paper the use of FDS with the advanced Large Eddy Simulation (LES) based CFD turbulence model is described for various applications: Fire simulation for Alpha storage, Bhabhatran teletherapy, pool fire for transport casks, fire PSA of a representative NPP, exhaust air fan buildings of a process plant and smoke dispersion in large fires around NPPs.

Abstract

Es wurde eine Studie zur Vorhersage des Verhaltens einer Pool-Brandquelle unter Verwendung des auf Feldmodellen basierenden Codes Fire Dynamics Simulator (FDS) durchgeführt. Es werden zeitabhängige Geschwindigkeits- und Temperaturfelder sowie die daraus resultierenden Änderungen in der Fahnenstruktur und deren Breite vorhergesagt. Zunächst wurde eine Gitterstudie durchgeführt, um die beste Gittergröße für diesen Zweck herauszufinden. Anschließend wurden Berechnungen durchgeführt, die eine sehr gute Übereinstimmung mit früher berichteten experimentell basierten Korrelationen für die Temperatur der Fahnenregion sowohl bei begrenzten als auch bei nicht begrenzten Fahnengeometrien zeigten. Diese Studien wurden erweitert, um diese auf Feldmodellen basierenden Werkzeuge für die Modellierung bestimmter separater Phänomene, wie z.B. der Puffing-Frequenz, zu verwenden und gegen experimentelle Daten zu validieren. Es gibt verschiedene Anwendungen in der Nuklearindustrie, wie z.B. Raumbrände, Waldbrände, Rauch- oder Ascheentsorgung, Wasserstofftransport in Kernreaktor-Containment, natürliche Konvektion in Gebäudeströmungen usw. In diesem Beitrag werden Simulationen mit FDS unter Verwendung des fortschrittlichen CFD Turbulenzmodells Large Eddy Simulation (LES) für die Anwendungen Brandsimulation für Alpha-260 Lager, Bhabhatran-Teletherapie, Pool-Brand für Transportbehälter, Brand PSA, Abluftventilator-Gebäude einer Prozessanlage und Rauchausbreitung bei Großbränden um KKWs beschrieben.

References

1 Kerrison, L.; MaWhinney, N.; Galea, E.R.; Hoffmann, N.; Patel, M. K.: A Comparison of a FLOW3D Based Fire Field Model with Experimental Compartment Fire Data. Fire Safety Journal 23 (1994) 387– 411, DOI:10.1016/0379-7112(94)90005-1 Search in Google Scholar

2 Kumar, S.; Hoffmann, N.; Cox, G.: Some Validation of Jasmine for Fires in Hospital Wards. Numerical Solution of Fluid Flow and Heat/Mass Transfer Processes, Springer-Verlag, Berlin, p.159, 1985, DOI:10.1007/978-3-642-82781-5_12 Search in Google Scholar

3 Welch, S.; Rubini, P.A.: SOFIE 2.1 User’s Manual. Cranfield University, Cranfield, United Kingdom, 1996 Search in Google Scholar

4 Galea, E. R.; Knight, B.; Patel, M. K.; Ewer, J.; Pitridis, M.; Taylor, S.: SMARTFIRE v2.0 User Guide and Technical Manual. Fire Safety Engineering Group, University of Greenwich, UK, 1998 Search in Google Scholar

5 Ferziger, J. H.: Subgrid-Scale Modeling. In: Large Eddy Simulation of Complex Engineering and Geophysical Flows. Editors: B. Galperin and S.A. Orszag, Cambridge University Press, Cambridge, pp 37–54, 1993 Search in Google Scholar

6 Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. MonthlyWeather Review 91 99–165, DOI:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 Search in Google Scholar

7 McGrattan, K. B.; Baum, H. R.; Rehm, R. G.; Forney, G. P.; Floyd, J. E.; Hostikka, S.: Fire Dynamics Simulator (Version 2), Technical Reference Guide. Technical Report NISTIR 6783, National Institute of Standards and Technology, Gaithersburg, Maryland, August, 2001, PMid:27500022; DOI:10.6028/NIST.IR.6783 Search in Google Scholar

8 Baum, H. R.; Rehm, R. G.: Numerical Computation of Large-Scale Fire Induced Flows. In: Eighth International Conference on Numerical Methods in Fluid Dynamics, Editors: E. Krause, Lecture Notes in Physics Vol. 170, Springer-Verlag, Berlin, pp 124–130, 1982, DOI:10.1007/3-540-11948-5_9 Search in Google Scholar

9 Baum, H. R.; Rehm, R.G.; Mulholland, G.W.: Computation of Fire Induced Flow and Smoke Coagulation. Nineteenth Symposium (International) on Combustion/The Combustion Institute, pp 921– 931.2–22, 1982, DOI:10.1016/S0082-0784(82)80268-3 Search in Google Scholar

10 Rehm, R. G.; Tang, H. C.; Baum, H. R.; Sims, J. S.; Corley, D. M.: A Boussinesq Algorithm for Enclosed Buoyant Convection in Two Dimensions. NISTIR 4540, U.S. Department of Commerce, National Institute of Standards and Technology, Computing and Applied Mathematics Laboratory, Gaithersburg, MD 20899, U.S.A., 1991, DOI:10.6028/NIST.IR.4540 Search in Google Scholar

11 Baum, H. R.; McGrattan, K. B.; Rehm, R. G.: Mathematical Modelling and Computer Simulation of Fire Phenomena. Fire Safety Science – Proceedings of the Fourth International Symposium, Ottawa, Ontario, Canada, 13–17 June 1994, pp 185–193, 1994, DOI:10.3801/IAFSS.FSS.4-185 Search in Google Scholar

12 Rehm, R. G.; McGrattan, K. B.; Baum, H. R.; Cassel, K. W.: Transport by Gravity Currents in Building Fires. Fire Safety Science – Proceedings of the Fifth International Symposium, pp 391–402, 1997, DOI:10.3801/IAFSS.FSS.5-391 Search in Google Scholar

13 Baum, H. R.; Mc Grattan, K. B.; Rehm, R. G.: Large Eddy Simulations of Smoke Movement in Three Dimensions. Conference Proceedings of the Seventh International Interflam Conference, Inter-science Communications, London, pp 189–198, 1996 Search in Google Scholar

14 Baum, H. R.; McGrattan, K. B.; Rehm, R. G.: Three Dimensional Simulations of Fire Plume Dynamics. Fire Safety Science – Proceedings of the Fifth International Symposium, pp 511–522, 1997, DOI:10.3801/IAFSS.FSS.5-511 Search in Google Scholar

15 Baum, H. R.: Large Eddy Simulations of Fires – from Concepts to Computations. Fire Protection Engineering, Issue No 6, pp. 36–42, 1999 Search in Google Scholar

16 McGrattan, K. B.; Baum, H. R.; Rehm, R. G.: Large Eddy Simulations of Smoke Movement. Fire Safety Journal, 30, 161–178, 1998, DOI:10.1016/S0379-7112(97)00041-6 Search in Google Scholar

17 Sharma, Pavan K.; Markandeya, S. G.; Ghosh, A. K.; Kushwaha, H. S.; Venkat Raj, V.: AComputational Fluid Dynamics Study of a Buoyant Plume in a Cross Flow Condition". 28th National Conference on Fluid Mechanics and Fluid Power, Punjab University, Chandigarh, Dec. 13–15, 2001. Search in Google Scholar

18 Baum, H. R.; McGrattan, K. B.; Rehm, R. G.: Large Eddy Simulations of Smoke Movement in Three Dimensions. Conference Proceedings of the Seventh International Interflam Conference, Inter-science Communications, London, pp 189–198, 1996. Search in Google Scholar

19 Baum, H. R.; McGrattan, K. B.; Rehm, R. G.: Three Dimensional Simulations of Fire Plume Dynamics. Fire Safety Science – Proceedings of the Fifth International Symposium, pp 511–522, 1997, DOI:10.3801/IAFSS.FSS.5-511 Search in Google Scholar

20 Spearpoint, M.; Mowrer, F.W.; McGrattan, K.: Simulation of a Compartment Flashover Fire Using Hand Calculations, Zone Models and a Field Model. International Conference on Fire Research and Engineering (ICFRE3), Third (3rd). Proceedings. Society of Fire Protection Engineers (SFPE), National Institute of Standard and Technology (NIST) and International Association of Fire Safety Science (IAFSS), Oct 4–8, 1999, Chicago, IL, Society of Fire Protection Engineers, Bostan, MA, 3–14 pp, 1999 Search in Google Scholar

21 Clement, J. M.: Experimental Verification of the Fire Dynamics Simulator (FDS) Hydrodynamic Model. Ph D. Thesis, University of Canterbury, Christchurch, New Zealand, October 2000 Search in Google Scholar

22 McGrattan, K. B.; Forney, G. P.: Fire Dynamics Simulator User Manual. NISTIR 6469, National Institute of Standards and Technology, Gaithersburg, Maryland, January 2000, DOI:10.6028/NIST.IR.6469 Search in Google Scholar

23 McGrattan, K. B.; Baum, H. R.; Rehm, R.G.; Hamins, A.; Forney,G. P.: Fire Dynamics Simulator, Technical Reference Guide. Technical Report NISTIR 6467, National Institute of Standards and Technology, Gaithersburg, Maryland, January 2000, DOI:10.6028/NIST.IR.6467 Search in Google Scholar

24 Chow, W. K.; Yin, R.: A new model on simulating smoke Transport with Computational Fluid Dynamics. Building and Environment, 39, 2004, pp. 611–620, DOI:10.1016%2Fj.buildenv.2003.12.012 Search in Google Scholar

25 U. S. Nuclear Regulatory Commission: Fire Dynamics Tools (FDTs) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire. Protection Inspection Program, NUREG-1805, U.S. Nuclear Regulatory Commission, Washington, DC, December 2004 Search in Google Scholar

26 McGrattan, K. B.; Baum, H. R.; Rehm, R.G.; Hamins, A.; Forney,G. P.: Large Eddy Simulation of Smoke Movement. Fire Safety Journal 30 (1998) 162–178 (1998), DOI:10.1016/S0379-7112(97)00041-6 Search in Google Scholar

27 Cetegen, B. M.; Ahmed, T. A.: Experiments on the Periodic Instability of Buoyant Plumes and Pool Fires. Combust Flame 93 (1993) 157–84, , DOI:10.1016/0010-2180(93)90090-P Search in Google Scholar

28 Vinod, G.; Saraf, R. K.; Ghosh, A. K.; Kushwaha, H. S.; Sharma, P. K.: Insights from fire PSA for enhancing NPP safety. Nuclear Engineering and Design 238 (2008) 2359 –2368, DOI:10.1016/j.nucengdes.2008.01.015 Search in Google Scholar

Received: 2020-07-27
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany