Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2021

ANSYS-CFX simulation of the SRBTL test loop core with nanofluid coolant

ANSYS-CFX Simulation mit Nanofluid-Kühlmitteln am Beispiel des SRBTL Versuchsstands
  • B. Khonsha , G. Jahanfarnia EMAIL logo , K. Sepanloo , M. Nematollahi and I. Khonsha
From the journal Kerntechnik


In the present study, CFD calculations are presented for the three types of water-based nanofluids Al2O3/water, CuO/water and TiO2/water with 0.1% volume fraction. These calculations are done with ANSYS-CFX and as geometry the SRBTL test loop as scaled down test loop for a VVER-1000 reactor core design is used. The goal of this study is to evaluate the CFD program against the SRBTL test loop core as a scaled core for applying water-based nanofluids as coolant. ANSYS-CFX simulation data are validated against the RELAP5/MOD3.2 simulation data for pure water. This comparison shows a good agreement. The simulation results for the nanofluids and water including Re number, temperature, viscosity, pressure drop and heat transfer coefficient through the SRBTL test loop core are compared. The results of the comparisons show that the SRBTL test loop core is suitable to extract experimental data of water-based nanofluids for using them as coolant in the VVER-1000 reactor.


In der vorliegenden Studie werden CFD-Berechnungen für die drei wasserbasierten Nanofluide Al2O3/Wasser, CuO/Wasser und TiO2/Wasser mit 0,1% Volumenanteil vorgestellt. Diese Berechnungen werden mit ANSYSCFX durchgeführt und als Geometrie wird die SRBTL-Testschleife (als verkleinerte Testschleife für ein WWER-1000-Reaktorkerndesign) verwendet. Das Ziel dieser Studie ist die Bewertung, ob mit Hilfe des CFD-Programms ein skalierter Kern, wie er in der SRBTL Versuchsanlage realisiert ist, für die Anwendung von Nanofluiden auf Wasserbasis als Kühlmittel genutzt werden kann. Die Simulationsdaten von ANSYS-CFX werden gegen die Simulationsdaten von RELAP5/MOD3.2 für reines Wasser validiert. Der Vergleich zwischen diesen zeigt eine gute Übereinstimmung. Die Simulationsergebnisse für die Nanofluide und Wasser einschließlich Re-Zahl, Temperatur, Viskosität, Druckabfall und Wärmeübergangskoeffizient durch den SRBTL-Testschleifenkern werden verglichen. Die Ergebnisse der Vergleiche zeigen, dass der SRBTL-Testschleifenkern geeignet ist, um experimentelle Daten von Nanofluiden auf Wasserbasis für deren Einsatz als Kühlmittel im WWER-1000-Reaktor zu gewinnen.


This study is carried out as a long-term research on thermal-hydraulic scaling and design of a test loop for Science and Research Branch of Islamic Azad University and supported by the Islamic Azad University. The author is pleased to acknowledge Drs. G. Jahanfarnia., K. Sepanloo and M. Nematollahi for their supports of the study.





Computational Fluid Dynamic


Critical heat flux


Dimensionless Parameter


Fuel Assemblies


Fuel Elements


Heat Exchanger


In-Vessel Retention


Minimum Departure from Nucleate Boiling Ratio


Science and Research Branch Test Loop


Reactor Coolant Pump




Steam Generator


Russian Pressurized Water Type Reactor



flow area (m2)


specific heat capacity (J/kg K)


coolant temperature (k)


velocity (m/s)


volume (m3)


Reynolds number


Nusselt number


pressure (Pa)


Prandtl number


heat flux (W/m2)


thermal conductivity (W/mK)


Boltzman constant (1.3807 × 10–23) (J/K)


pressure drop coefficient


mass flux, Kg/m2s


enthalpy (J/kg)


nanoparticle diameter (nm)


fluid density, kg/m3


Volume fraction





coolant bulk


base fluid








wall surface


1 Choi, S.: Nanofluid Technology, Current Status and Future Research. the Second Korean-American Scientists and Engineers Association Research Trend Study. 1998 ViennaSearch in Google Scholar

2 Das, S. K.; Putra, N.; Thiesen, P.; et al.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. of Heat Transfer 125 (2003) 567–74, DOI:10.1115/1.157108010.1115/1.1571080Search in Google Scholar

3 Xuan, Y.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. ASME J. of Heat Transfer 125 (2003) 151–155, DOI:10.1115/1.153200810.1115/1.1532008Search in Google Scholar

4 Buongiorno, J.; Truong, B.: Preliminary study of water-based nanofluid coolants for PWRs. Transactions of the American Nucl. Society 92 (2005) 383–384Search in Google Scholar

5 Chon, C. H.; Kihm, K.D.; Lee S. P.; et al.: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 87 (2005) 3107, DOI:10.1063/1.209393610.1063/1.2093936Search in Google Scholar

6 Nguyena, B.; Taniousa, F. A.; Wilson, W. D.: Biosensor-surface Plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods 42 (2007) 150–161, PMid:17472897, DOI:10.1016/j.ymeth.2006.09.00910.1016/j.ymeth.2006.09.009Search in Google Scholar PubMed

7 Mansour, R. B.; Galanis, N.; Nguyen, C. T.: Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids. Applied Thermal Engineering 27 (2007) 240–249, DOI:10.1016/j.applthermaleng.2006.04.01110.1016/j.applthermaleng.2006.04.011Search in Google Scholar

8 Buongiorno, J.; Hu, L. W.; Kim, S. J.; et al.: Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features. issues and research gaps. Nucl. Technol. 162 (2008) 80–91, DOI:10.13182/NT08-A393410.13182/NT08-A3934Search in Google Scholar

9 Bianco, V.; Chiacchio, F.; Manca, O.; et al.: Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering 29 (2009) 3632–3642, DOI:10.1016/j.applthermaleng.2009.06.01910.1016/j.applthermaleng.2009.06.019Search in Google Scholar

10 Buongiorno, J.; Hu, L. W.; Apostolakis, G.; Hanninka, R.; et al.: A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl. Eng. Des. 239 (2009) 941–948, DOI:10.1016/j.nucengdes.2008.06.01710.1016/j.nucengdes.2008.06.017Search in Google Scholar

11 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Neutronic analysis of nanofluids as a coolant in Bushehr VVER-1000 reactor. Nukleonika 52 (2012) 375–381, DOI:10.1016/j.pnucene.2013.01.00410.1016/j.pnucene.2013.01.004Search in Google Scholar

12 Ismay, M. J. L.; Doroodchi, E.; Moghtaderi, B.: Effects of colloidal properties on sensible heat transfer in water-based titania nanofluids. Chemical Engineering Research and Design 91 (2013) 426–36, DOI:10.1016/j.cherd.2012.10.00510.1016/j.cherd.2012.10.005Search in Google Scholar

13 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach. Ann. Nucl. Energy 51 (2013) 203–212, DOI:10.1016/j.anucene.2012.07.04110.1016/j.anucene.2012.07.041Search in Google Scholar

14 Zarifi, E.; Jahanfarnia, G.; Veisy, F.: Subchannel analysis of nanofluids application to VVER-1000 reactor. Chemical Engineering Research and Design 91 (2013) 625–632, DOI:10.1016/j.cherd.2013.01.01810.1016/j.cherd.2013.01.018Search in Google Scholar

15 Tiwari, K.; Ghosh, P.; Sarkar, J.; et al.: Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids. Int. J. of Thermal Sciences 85 (2014) 93–103, DOI:10.1016/j.ijthermalsci.2014.06.01510.1016/j.ijthermalsci.2014.06.015Search in Google Scholar

16 Mousavizadeh, S. M.; Ansarifar,G. R.; Talebi, M.: Assessment of the TiO2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling. Nucl. Engineering and Technology 47 (2015) 814–826, DOI:10.1016/ in Google Scholar

17 Palandi, S. J.; Rahimi-Sbo, A.; Mohammadyari, R.; et al.: Thermo-hydraulic investigation of nanofluid as a coolant in VVER-440 fuel rod bundle. Trans. Phenom. Nano Micro Scales 3 (2015) 77 –88, DOI:10.7508/tpnms.2015.02.00210.7508/tpnms.2015.02.002Search in Google Scholar

18 Lomascolo, M.; Colangelo, G.; Milanese, M.; et al.: Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews 43 (2015) 1182–1198, DOI:10.1016/j.rser.2014.11.08610.1016/j.rser.2014.11.086Search in Google Scholar

19 Sharma, D.; Pandey, K. M.; Debbarma, A.; et al.: Numerical Investigation of heat transfer enhancement of SiO2-water based nanofluids in Light water nuclear reactor. Materials Today: Proceedings 4 (2017) 10118–10122, DOI:10.1016/j.matpr.2017.06.33210.1016/j.matpr.2017.06.332Search in Google Scholar

20 Ashouri, H.; Ghasemizad, A.; Sadatkiae, S. M.; et al.: Numerical simulation of heat transfer improvement in the divertor of fusion reactors by using Al2O3 nanofluid. Journal of Theoretical and Applied Physics 12 (2018) 299–308, , DOI:10.1007/s40094-018-0315-y10.1007/s40094-018-0315-ySearch in Google Scholar

21 Khonsha, B.; Jahanfarnia, G.; Sepanloo, S., et al.: Scaling and thermal-hydraulic design of a test loop for the VVER-1000 reactor. Prog. in Nucl. Energy 113 (2019) 18–27, DOI:10.1016/j.pnucene.2019.01.00710.1016/j.pnucene.2019.01.007Search in Google Scholar

22 Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Trans. 11 (1998) 151–170, DOI:10.1080/0891615980894655910.1080/08916159808946559Search in Google Scholar

23 Das, S. K.; Choi, S. U. S.; Yu,W.; et al.: Nanofluids Science and Technology, JohnWiley & Sons, 2008, Hoboken, NJ, USASearch in Google Scholar

24 Masuda, H.; Ebata, A.; Teramae, K.; et al.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei 4 (1993) 227–233 (Japanes), DOI:10.2963/jjtp.7.22710.2963/jjtp.7.227Search in Google Scholar

25 Maiga, S. E. B.; Nguyen, C.; Galanis, N.; et al.: Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices and Microstructures 35 (2004) 543 –557, DOI:10.1016/j.spmi.2003.09.01210.1016/j.spmi.2003.09.012Search in Google Scholar

Received: 2020-08-22
Published Online: 2021-12-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 30.9.2023 from
Scroll to top button