Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2021

Evaluation of human factor engineering influence in nuclear safety using probabilistic safety assessment techniques

Bewertung des Einflusses des Human Factor Engineerings auf die nukleare Sicherheit mit Hilfe probabilistischer Verfahren zur Bewertung der Sicherheit
M. Farcasiu and C. Constantinescu
From the journal Kerntechnik

Abstract

This paper provides the empirical basis to support predictions of the Human Factor Engineering (HFE) influences in Human Reliability Analysis (HRA). A few methods were analyzed to identify HFE concepts in approaches of Performance Shaping Factors (PSFs): Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR) and Cognitive Reliability and Error Analysis Method (CREAM), Success Likelihood Index Method (SLIM) Plant Analysis Risk – Human Reliability Analysis (SPAR-H), A Technique for Human Error Rate Prediction (ATHEANA) and Man-Machine-Organization System Analysis (MMOSA). Also, in order to identify other necessary PSFs in HFE, an additional investigation process of human performance (HPIP) in event occurrences was used. Thus, the human error probability could be reduced and its evaluating can give out the information for error detection and recovery. The HFE analysis model developed using BHEP values (maximum and pessimistic) is based on the simplifying assumption that all specific circumstances of HFE characteristics are equal in importance and have the same value of influence on human performance. This model is incorporated into the PSA through the HRA methodology. Finally, a clarification of the relationships between task analysis and the HFE is performed, ie between potential human errors and design requirements.

Abstract

Dieser Beitrag liefert eine empirische Grundlage zur Unterstützung von Vorhersagen über den Einfluss des Human Factor Engineerings (HFE) in der Human Reliability Analysis (HRA). Es warden dazu einige Methoden analysiert, um HFE-Konzepte mit Ansätzen von Performance Shaping Factors (PSFs) zu identifizieren: Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR) und Cognitive Reliability and Error Analysis Method (CREAM), Success Likelihood Index Method (SLIM) Plant Analysis Risk – Human Reliability Analysis (SPAR-H), A Technique for Human Error Rate Prediction (ATHEANA) und Man-Machine-Organization System Analysis (MMOSA). Um weitere notwendige PSFs in der HFE zu identifizieren, wurde ein zusätzlicher Untersuchungsprozess der Human Performance (HPIP) bei Ereignisereignissen eingesetzt. Auf diese Weise konnte die menschliche Fehlerwahrscheinlichkeit reduziert werden und ihre Auswertung kann Informationen zur Fehlererkennung und -beseitigung liefern. Das unter Verwendung von BHEP-Werten (maximal und pessimistisch) entwickelte HFE-Analysemodell basiert auf der vereinfachenden Annahme, dass alle spezifischen Umstände der HFE-Merkmale gleich wichtig sind und den gleichen Einfluss auf die menschliche Leistung haben. Dieses Modell wird durch die HRA-Methodik in die PSA einbezogen. Schließlich wird eine Klärung der Beziehungen zwischen der Aufgabenanalyse und dem HFE vorgenommen, d. h. zwischen potenziellen menschlichen Fehlern und den Konstruktionsanforderungen.

References

1 Swain, A. D.; Guttman, H. E.: Handbook of Human Reliability Analysis With Emphasis on Nuclear Power Plant Applications. NUREG/CR-1278,Washington DC: U.S. Nuclear Regulatory Commission (1983)10.2172/5752058Search in Google Scholar

2 IAEA: Human Factors Engineering in the Design of Nuclear Power Plants. Vienna, IAEA Safety Standards No. SSG-51 (2019)Search in Google Scholar

3 FAA: FAASystem Safety Handbook. Federal Aviation Administration (2000)Search in Google Scholar

4 IAEA: Safety of Nuclear Power Plants: Design. Vienna, IAEA Safety Standards Series No. SSR –2/1 (2016)Search in Google Scholar

5 Stefanescu, P.: The Organizational and Human Factor in Nuclear Safety. Note de curs, UPB, Facultatea de Energetica. 2000 (in Romanian)Search in Google Scholar

6 de Vasconcelos, V.; Pereira da Silva, E. M.; Lopes da Costa, A. C.; Carneiro dos Reis, S.: Safety, Reliability, Risk Management and Human Factors: An integrated engineering approach applied to nuclear facilities. 2009 International Nuclear Atlantic Conference – INAC 2009 Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009, ISBN: 978–85–99141–03 –°Search in Google Scholar

7 Feller, W.: An introduction to Probability Theory and its Application. New York, London Sydney, Jon Wiley & Sons. Inc, 196810.1063/1.3062516Search in Google Scholar

8 Farcasiu, M.; Prisecaru, I.: MMOSA – a new approach of the human and organizational factor analysis in PSA. Reliability Engineering and System Safety 123 (2014) 91–98, , DOI:10.1016/j.ress.2013.10.00410.1016/j.ress.2013.10.004Search in Google Scholar

9 Farcasiu, M.; Prisecaru, I.: The Evaluation of the Human Performance Analysis Methods in Nuclear Facility Operation. The 4th Annual International Conference on Sustainable Development through Nuclear Research and Education, Pitesti, Romania (2011)Search in Google Scholar

10 NRC: Development of the NRC’s Human Performance Investigation Process (HPIP). NUREG-CR-5455, SI-92–101, Washington, DC (1993)Search in Google Scholar

11 Farcasiu, M.; Nitoi, M.: The organizational factor in PSA framework. Nuclear Engineering and Design 293 (2015) 205–211, , DOI:10.1016/j.nucengdes.2015.06.02010.1016/j.nucengdes.2015.06.020Search in Google Scholar

12 NRC: Human Factors Engineering Program Review Model. NUREG-0711, Rev. 3 (2012)Search in Google Scholar

13 INR: Fault trees development and fault tree report elaboration. PL-01/07-EPSN-024 (1998) RENEL-GEN, EPSNSearch in Google Scholar

14 Vesely, W. E.; Goldberg, F.F.; Roberts, N. H.; Haasl, D. F.: Fault Tree Handbook. NUREG-0492, U.S Nuclear Regulatory Commission, Washington, D.C (1981)Search in Google Scholar

15 Georgescu, G.; Turcu, I.: Soft for the Probabilistic Safety Analysis Level 1. Program TEMPUS SENECA, University Polithehnic Bucharest (1996) (in Romanian)Search in Google Scholar

16 Jean, A. F.: Observed Component Reliability Data. Point Lepreau Generating Station, Canada, IR-01530–01 (1995)Search in Google Scholar

17 IAEA: Component Reliability Data for use in PSA. IAEA-TECDOC-478, Vienna, Austria, (1988)Search in Google Scholar

18 McColl, D.: Component Reliability Data for Candu Stations. AECL Canada, Report no. 86296 (1986)Search in Google Scholar

19 IAEA: Application of Reliability Centred Maintenance to Optimize Operation and Maintenance in Nuclear Power Plants. IAEA-TECDOC-1590 (2007)Search in Google Scholar

Received: 2020-08-31
Published Online: 2021-12-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany