Accessible Requires Authentication Published by De Gruyter August 18, 2021

Characterization of polystyrene and polyacrylic based polymeric materials exposed to oxidative degradation

Charakterisierung von Polymeren auf Polystyrol- und Polyacrylbasis, die einem oxidativen Abbau ausgesetzt sind
P. U. Singare
From the journal Kerntechnik

Abstract

The characterization of oxidative degraded polystyrene-based resin (R1) and polyacrylic based resin (R2) resins in H2O2 and HClO4 degradation medium were made based on the kinetics and thermodynamic data obtained for the ion-isotopic exchange reactions using such resins. For the reactions performed by using resins degraded in H2O2 medium, the reaction rate (k) values obtained for the fresh R1 (0.315 min–1) and R2 (0.187 min–1) resins decreases to 0.300 and 0.155 min–1 respectively for the resins degraded in 20% H2O2 medium, which further decreases to 0.289 and 0.142 min–1 respectively for the resins degraded in 30% H2O2 medium. A similar trend in the results were observed for the reactions performed by using the above resins degraded in HClO4 medium. The higher values of k (min–1) and low values of various thermodynamic parameters for the ion-isotopic exchange reactions performed by using fresh and degraded polystyrene-based resin R1 resins suggests superior degradation stability as compared to polyacrylic based R2 resin.

Abstract

Die Charakterisierung der oxidativ abgebauten polystyrol-basierten Harze (R1) und der polyacryl-basierten Harze (R2) in H2O2- und HClO4-Abbaumedium erfolgt auf der Grundlage der kinetischen und thermodynamischen Daten, die für die Ionen-Isotopen-Austauschreaktionen unter Verwendung solcher Harze bestimmt wurden. Für die Reaktionen, die unter Verwendung von in H2O2-Medien abgebauten Harzen durchgeführt wurden, sinkt die Reaktionsgeschwindigkeit (k), die für die frischen R1- (0,315 min–1) und R2-Harze (0,187 min–1) erhalten wurde, auf 0,300 bzw. 0,155 min–1 für die in 20 %igem H2O2- Medium abgebauten Harze, die weiter auf 0,289 bzw. 0,142 min–1 für die in 30 %igem H2O2-Medium abgebauten Harze sinkt. Ein ähnlicher Trend in den Ergebnissen wurde für die Reaktionen beobachtet, die unter Verwendung der oben genannten Harze, die in HClO4-Medium abgebaut wurden, durchgeführt wurden. Die höheren Werte von k (min–1) und die niedrigen Werte verschiedener thermodynamischer Parameter für die Ionen-Isotopen-Austauschreaktionen, die unter Verwendung von frischem und abgebautem Harz auf Polystyrolbasis (R1) durchgeführt wurden, deuten auf eine höhere Abbaustabilität im Vergleich zum Harz auf Polyacrylbasis (R2) hin.

Acknowledgement

The author is thankful to Professor Dr. R.S. Lokhande (Retired) for his valuable help and support by providing the required facilities so as to carry out the experimental work in Radiochemistry Laboratory, Department of Chemistry, University of Mumbai, Vidyanagari, Mumbai –400 058.

References

1 Alexandratos, S. D.: Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 48 (2009) 388–398, DOI:10.1021/ie801242v Search in Google Scholar

2 Oldani, M.; Killer, E.; Miguel, A.; Schock, G.: On the nitrate and monovalent cation selectivity of ion exchange membranes used in drinking water purification. J. Memb. Sci. 75 (1992) 265–275, DOI:10.1016/0376-7388(92)85068-T Search in Google Scholar

3 Samatya, S.; Kabay, N.; Yuksel, N.; Arda, M.; Yuksel, M.: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 66 (2006) 1206–1214, DOI:10.1016/j.reactfunctpolym.2006.03.009 Search in Google Scholar

4 Haghsheno, R.; Mohebbi, A.; Hashemipour, H.; Sarrafi, A.: Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin. J. Hazard. Mater. 166 (2009) 961–966, PMid:19135783; DOI:10.1016/j.jhazmat.2008.12.009 Search in Google Scholar

5 Bolto, B.; Dixon, D.; Eldridge, R.; King, S.; Linge, K.: Removal of natural organic matter by ion exchange. Water Res. 36 (2002) 5057–5065, DOI:10.1016/S0043-1354(02)00231-2 Search in Google Scholar

6 Balster, J.; Krupenko, O.; Punt, I.; Stamatialis, D. F.; Wessling, M.: Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly (ether ether ketone). J. Memb. Sci. 263 (2005) 137–145, DOI:10.1016/j.memsci.2005.04.019 Search in Google Scholar

7 Indarawis, K. A.; Boyer, T. H.: Superposition of anion and cation exchange for removal of natural water ions. Sep. Purif. Technol. 118 (2013) 112–119, DOI:10.1016/j.seppur.2013.06.044 Search in Google Scholar

8 Oehmen, A.; Vergel, D.; Fradinho, J.; Reis, M. A. M.; Crespo, J. G.; Velizarov, S.: Mercury removal from water streams through the ion exchange membrane bioreactor concept. J.Hazard. Mater. 264 (2014) 65–70, PMid:24275472; DOI:10.1016/j.jhazmat.2013.10.067 Search in Google Scholar

9 Wisniewski, J. A.; Korbutowicz, M. K.; Lakomska, S.: Ion-exchange membrane processes for Br – and BrO3– ion removal from water and for recovery of salt from waste solution. Desalination 342 (2014) 175–182, 10.1016/j.desal.2013.07.007 Search in Google Scholar

10 Barbaro, P. Liguori, F.: Ion Exchange Resins: Catalyst Recovery and Recycle. Chem. Rev. 109 (2009) 515–529, PMid:19105606; DOI:10.1021/cr800404j Search in Google Scholar

11 Ladeira, A. C. Q.; Morais, C. A.: Uranium recovery from industrial effluent by ion exchange–column experiments. Minerals Engineering. 18 (2005) 1337–1340, DOI:10.1016/j.mineng.2005.06.012 Search in Google Scholar

12 Sahu, S. K.; Meshram, P.; Pandey, B.D.; Kumar, V.; Mankhand, T. R.: Removal of chromium (III) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 99 (2009) 170–174, DOI:10.1016/j.hydromet.2009.08.002 Search in Google Scholar

13 Petrova, T. I.; Voronov, V. N.; Larin, B. M.: Tekhnologiya organizatsii vodno-khimicheskogo rezhima atomnykh elektrostantsii (Technology for Organization of Water Chemical Regime at Nuclear Power Plants), Moscow: MEI, pp. 81–82 (2012) Search in Google Scholar

14 Wang, J.; Wan, Z.: Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy. 78 (2015) 47 –55, DOI:10.1016/j.pnucene.2014.08.003 Search in Google Scholar

15 Davis, P.; Tiganis, B. E.; Burn, L. S.: The effect of photo-oxidative degradation on fracture in ABS pipe resins. Polymer Degradation and Stability. 84 (2004) 233–242, DOI:10.1016/j.polymdegradstab.2003.10.017 Search in Google Scholar

16 Middleton, J.; Burks, B.; Wells, T.; Setters, A. M.; Jasiuk, I.; Kumosa, M.: The effect of ozone and high temperature on polymer degradation in polymer core composite conductors. Polymer Degradation and Stability. 98 (2013) 2282–2290, DOI:10.1016/j.polymdegradstab.2013.08.013 Search in Google Scholar

17 Bondzic, S.; Hodgkin, J.; Krstina, J.; Mardel, J.: Chemistry of thermal ageing in aerospace epoxy composites. J.Applied Polymer Science. 100 (2006) 2210–2219, DOI:10.1002/app.23692 Search in Google Scholar

18 Yousif, E.; Haddad, R.: Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2 (2013) 398, PMid:25674392; DOI:10.1186/2193-1801-2-398 Search in Google Scholar

19 Chuuman, T.; Abe, K.; Minato, Y.; Orita, N.: Degradation of ion exchange resin by vanadium containing water. J. Ion Exchange. 25 (2014) 252–255, DOI:10.5182/jaie.25.252 Search in Google Scholar

20 Arm, S. T.; Blanchard, D. L.; Fiskum, S. K.: Chemical degradation of an ion exchange resin processing salt solutions. Separation and Purification Technology. 43 (2005) 59 –69, DOI:10.1016/j.seppur.2004.10.001 Search in Google Scholar

21 Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O.: Ion exchange resins destruction in a stirred supercritical water oxidation reactor. The J. Supercrit. Fluids 51(2010) 369–375, DOI:10.1016/j.supflu.2009.08.017 Search in Google Scholar

22 Konovalov, B. V.; Kravchishina, M. D.; Belyaev, N. A.; Novigatsky, A. N.: Determination of the concentration of mineral particles and suspended organic substance based on their spectral absorption. Oceanology 54 (2014) 660–667, DOI:10.1134/S0001437014040067 Search in Google Scholar

23 Huang, Y. J.; Wang, H. P.; Chao, C. C.; Liu, H. H.; Hsiao, M. C.; Liu, S. H.: Oxidation Kinetics of Spent Low- Level Radioactive Resins. Nuclear Science and Engineering 151 (2005) 355–360, DOI:10.13182/NSE05-A2555 Search in Google Scholar

24 Chambree, D.; Iditoiu, C.; Segal, E.; Cesaro, A.: The study of non-isothermal degradation of acrylic ion- exchange resins. Journal of Thermal Analysis and Calorimetry 82 (2005) 803–811, DOI:10.1007/s10973-005-0967-0 Search in Google Scholar

25 Haas, D. W.; Hrutfiord, B. F.; Sarkanen, K. V.: Kinetic study on the alkaline degradation of cotton Hydrocellulose. J. Appl. Polym. Sci. 11 (1967) 587–600, DOI:10.1002/app.1967.070110408 Search in Google Scholar

26 Kumar, B. G.; Singh, R. P.; Nakamura, T.: Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. Journal of Composite Materials 36 (2002) 2713–2721, DOI:10.1177/002199802761675511 Search in Google Scholar

27 Signor, A. W.; VanLandingham, M. R.; Chin, J. W.: Effect of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical, mechanical damage. Polymer Degradation and Stability 79 (2003) 359–368, DOI:10.1016/S0141-3910(02)00300-2 Search in Google Scholar

28 Pinto, L. F. A.; Goi, B. E.; Schmitt, C. C.; Neumann, M. G.: Photodegradation of polystyrene films containing UV- visible sensitizers. Journal of Research Updates in Polymer Science 2 (2013) 39 –47, DOI:10.6000/jrups.v2i1.841 Search in Google Scholar

29 Gijsman, P.; Diepens, M.: Photolysis and photooxidation in engineering plastics. In M. C. Celina, N.C. Billingham, J. S. Wiggins (Eds.), Polymer degradation and performance (pp.287–306). (ACS Symposium Series; Vol. 1004).Washington: American Chemical Society, (2009), DOI:10.1021/bk-2009-1004.ch024 Search in Google Scholar

30 Patange, A. N.: Study on ion exchange behavior of nuclear grade resin AuchliteARA9366 chemically degraded in hydrogen peroxide medium. Oriental Journal of Chemistry 33 (2017) 1001–1010, DOI:10.13005/ojc/330255 Search in Google Scholar

31 Singare, P. U.: Ion-isotopic exchange reaction kinetics using Duolite ARA-9366B and Indion-AGR resins. Ionics. 20 (2014) 867–874, DOI:10.1007/s11581-013-1054-3 Search in Google Scholar

32 Sood, D. D.: Proceedings of International Conference on Applications of Radioisotopes and Radiation in Industrial Development, edited by D. D. Sood, A. V. R. Reddy, S. R. K. Iyer, S. Gangadharan, G. Singh, BARC, Mumbai, India, pp.47, (1998) Search in Google Scholar

33 Singare, P. U.: Non-Destructive Application of radioactive tracer technique for characterization of industrial grade anion exchange resins Indion GS-300 and Indion-860. Nuclear Engineering and Technology 46 (2014) 93–100, DOI:10.5516/NET.07.2013.048 Search in Google Scholar

34 Singare, P. U.: Radiotracers in performance evaluation of nuclear grade resins Amberlite IRN-78 and Purolite NRW-8000. Kerntechnik 79 (2014) 51–57, DOI:10.3139/124.110391 Search in Google Scholar

35 Singare, P. U.: Determination of kinetic and thermodynamic properties of Radio Tracer Exchange on Indion GS-300 and Indion GS-400 by Using Radio Analytical Technique. Ion Exchange Letters 7 (2014) 6–15, Search in Google Scholar

36 Singare, P. U.: Non-destructive radiotracer technique in characterisation of nuclear grade anion exchange resins Tulsion A-30 and Dowex 550A LC. Int. J. Nuclear Energy Science and Technology 8 (2014) 157–170, DOI:10.1504/IJNEST.2014.060106 Search in Google Scholar

37 Ong, L. K.; Kurniawan, A.; Suwandi, A. C.; Lin, C. X.; Zhao, X. S.; Ismadji, S.: Transesterification of leather tanning waste to biodiesel at supercritical condition: Kinetics and thermodynamics studies. The Journal of Supercritical Fluids 75 (2013) 11–20, DOI:10.1016/j.supflu.2012.12.018 Search in Google Scholar

38 Stavila, V.; Volponi, J.; Katzenmeyer, A. M.; Dixon, M. C.; Allendorf, M. D.: Kinetics and mechanism of metal– organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 3 (2012) 1531–1540, DOI:10.1039/C2SC20065A Search in Google Scholar

Received: 2021-01-19
Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany