Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter December 13, 2021

Optimization of the TiO2 nanofluid as a coolant in the VVER-1000 nuclear reactor based on the thermal reactivity feedback coefficients via the genetic algorithm

Optimierung des TiO2-Nanofluids als Kühlmittel im Reaktor VVER-1000 auf der Grundlage der Rückkopplungskoeffizienten der thermischen Reaktivität mit Hilfe eines genetischen Algorithmus
R. Kianpour and G. R. Ansarifar
From the journal Kerntechnik


The purpose of this study is to display the neutronic simulation of nanofluid application to reactor core. The variations of VVER-1000 nuclear reactor primary neutronic parameters are investigated by using different volume fraction of nanofluid as coolant. The effect of using nanofluid as coolant on reactor dynamical parameters which play an important role in the dynamical analysis of the reactor and safety core is calculated. In this paper coolant and fuel temperature reactivity coefficients in a VVER-1000 nuclear reactor with nanofluid as a coolant are calculated by using various volume fractions and different sizes of TiO2 (Titania) nanoparticle. For do this, firstly the equivalent cell of the hexagonal fuel rod and the surrounding coolant nanofluid is simulated. Then the thermal hydraulic calculations are performed at different volume fractions and sizes of the nanoparticle. Then, using WIMS and CITATION codes, the reactor core is simulated and the effect of coolant and fuel temperature changes on the effective multiplication factor is calculated.

For doing optimization, an artificial neural network is trained in MATLAB using the observed data. The different sizes and various volume fractions are inputs, fuel and coolant temperature reactivity coefficients are outputs. The optimal size and volume fraction is determined using the neural network by implementing the genetic algorithms. In the optimization, volume fraction of 7% and size 77 nm are optimal values.


Das Ziel dieser Untersuchungen ist die Darstellung von Neutronenberechnungen bei der Anwendung von Nanofluiden im Reaktorkern. Die Variationen der primären Parameter des WWER-1000-Kernreaktors werden durch die Verwendung verschiedener Volumenanteile von Nanofluid als Kühlmittel untersucht. Die Auswirkungen der Verwendung von Nanofluid als Kühlmittel auf die dynamischen Parameter des Reaktors, die eine wichtige Rolle bei der dynamischen Analyse des Reaktors und des Sicherheitskerns spielen, werden berechnet. In dieser Arbeit werden die Reaktivitätskoeffizienten von Kühlmittel und Brennstofftemperatur in einem WWER-1000-Kernreaktor mit Nanofluid als Kühlmittel unter Verwendung verschiedener Volumenanteile und unterschiedlicher Größen von TiO2 (Titandioxid)-Nanopartikeln berechnet. Dazu wird zunächst die Äquivalenzzelle aus dem hexagonalen Brennstab und dem umgebenden Kühlmittel-Nanofluid simuliert. Dann werden die thermohydraulischen Berechnungen für verschiedene Volumenanteile und Größen der Nanopartikel durchgeführt. Anschließend wird mit den Codes WIMS und CITATION der Reaktorkern simuliert und die Auswirkung von Kühlmittelund Brennstofftemperaturänderungen auf den effektiven Multiplikationsfaktor berechnet. Für die Optimierung wird ein künstliches neuronales Netz in MATLAB anhand der beobachteten Daten trainiert. Die verschiedenen Größen und Volumenanteile sind Eingaben, die Reaktivitätskoeffizienten für die Brennstoffund Kühlmitteltemperatur sind Ausgaben. Die optimale Größe und der optimale Volumenanteil werden mithilfe des neuronalen Netzes durch die Anwendung genetischer Algorithmen bestimmt. Bei der Optimierung sind ein Volumenanteil von 7% und eine Größe von 77 nm die optimalen Werte.


1 Khanjani, S.; Tavakoli, A.; Jalali Vahid, D.; Nazari, M.: Effect of cut twisted tape and Al2O3 nanofluid on heat transfer of double tube heat exchanger. Modares Mechanical Engineering 15 (2016) 181–190.Search in Google Scholar

2 Aslani, H.; Moghiman, M.: Experimental investigation and fuzzy logic modelling of nanofluid solidification behavior. Modares Mechanical Engineering 15 (2016) 284–292Search in Google Scholar

3 Buongiorno, J.; Hu, L.-W.; Kim, S. J.; Hannink, R.; Truong, B.; Forrest, E.: Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nuclear Technology 162 (2008) 80–91, DOI:10.13182/NT08-A393410.13182/NT08-A3934Search in Google Scholar

4 Murshed, S. M. S.; Leong, K. C.; Yang, C.: Thermophysical and electrokinetic properties of nanofluids –Acritical review. Applied Thermal Engineering 28 (2008) 2109–2125, DOI:10.1016/j.applthermaleng.2008.01.00510.1016/j.applthermaleng.2008.01.005Search in Google Scholar

5 Zarifi, E.; Jahanfarnia, G.; Veysi, F.: Subchannel analysis of nanofluids application to VVER-1000 reactor. Chemical Engineering Research and Design 9 (2013) 625–632, DOI:10.1016/j.cherd.2013.01.01810.1016/j.cherd.2013.01.018Search in Google Scholar

6 Masuda, H.; Ebata, A.; Teramae, K.: Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei 7 (1993) 277–233, 1993, DOI:10.2963/jjtp.7.22710.2963/jjtp.7.227Search in Google Scholar

7 Zarifi, E.; Jahanfarnia, G.; Veysi, F.: Thermal–hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach. Annals of Nuclear Energy 51 (2013) 203–212, DOI:10.1016/j.anucene.2012.07.04110.1016/j.anucene.2012.07.041Search in Google Scholar

8 Ahmad, S.-u.-I.; Aslam, N. A.: Effect of different cross-section data sets on reflectors of a typical material test research reactor. Progress in Nuclear Energy 48 (2006) 155–164, DOI:10.1016/j.pnucene.2005.09.00110.1016/j.pnucene.2005.09.001Search in Google Scholar

9 Donnelly, J.: WIMS-CRNL: A user’s manual for the Chalk River version of WIMS. AECL (Series) 8955, Chalk River Nuclear Laboratories (1986)Search in Google Scholar

10 Fowler, T.; Vondy, D.: Nuclear Reactor Core analysis Code: CITATION. ORNL-TM-2496, Oak Ridge National Lab., Tenn. (1969)Search in Google Scholar

11 Launder, B. E.; Spalding, D. B.: Lectures in mathematical models of turbulence. London, Academic Press, Inc., Ltd., p. 174 (1972)Search in Google Scholar

12 Rafiei Karahroudi, M., Mousavi Shirazi, S. A.: Study of power distribution in the CZP, HFP and normal operation states of VVER-1000 (Bushehr) nuclear reactor core by coupling nuclear codes. Annals of Nuclear Energy 75 (2015) 38 –43, DOI:10.1016/j.anucene.2014.07.03810.1016/j.anucene.2014.07.038Search in Google Scholar

13 Kianpour, R.; Ansarifar, G. R.; Fathi, M.: Optimal design of a VVER-1000 nuclear reactor core with dual cooled annular fuel based on the reactivity temperature coefficients using Thermal hydraulic and neutronic analysis by implementing the genetic algorithms. Annals of Nuclear Energy 148 (2020) 107682, DOI:10.1016/j.anucene.2020.10768210.1016/j.anucene.2020.107682Search in Google Scholar

14 WWER-type reactor plants. OKB Gidropress. Retrieved 25 (2013)Search in Google Scholar

15 Ebrahimian, M.; Ansarifar, G. R.: Investigation of the Nano fluid effects on heat transfer characteristics in Nuclear Reactors with dual cooled annular fuel using CFD (Computational Fluid Dynamics) Modeling. Proceedings of the ICE – Energy 98 (2016) 1–14, DOI:10.1016/ in Google Scholar

16 Ansarifar, G. R.; Ebrahimian, M.: Design and Neutronic investigation of the Nano fluids application to VVER-1000 nuclear reactor with dual cooled annular fuel. Annals of Nuclear Energy 87 (2016) 39–47, DOI:10.1016/j.anucene.2015.08.01310.1016/j.anucene.2015.08.013Search in Google Scholar

17 Ashoub, N.; Saleh, H. G.: Neutronic evaluation of two proposed fuel lattice pitches for ET-RR-1 reactor. Annals of Nuclear Energy 27 (2000) 553–561, DOI:10.1016/S0306-4549(99)00073-010.1016/S0306-4549(99)00073-0Search in Google Scholar

18 Maxwell, J. C.: A treatise on electricity and magnetism. Clarendon (1955)Search in Google Scholar

19 Kianpour, R.; Ansarifar, G. R.: Assessment of the nano-fluid effects on the thermal reactivity feedback coefficients in the VVER-1000 nuclear reactor with nano-fluid as coolant using thermal hydraulic and neutronics analysis. Annals of Nuclear Energy 133 (2019) 623–636, DOI:10.1016/j.anucene.2019.07.00210.1016/j.anucene.2019.07.002Search in Google Scholar

20 Fluent Inc.: User’s Manual to Fluent 6.3. Fluent Inc. (2005)Search in Google Scholar

21 Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer 43 (2000) 3701–3707, DOI:10.1016/S0017-9310(99)00369-510.1016/S0017-9310(99)00369-5Search in Google Scholar

22 Wang, X.-Q.; Mujumdar, A. S.: Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences 46 (2007) 1–19, DOI:10.1016/j.ijthermalsci.2006.06.01010.1016/j.ijthermalsci.2006.06.010Search in Google Scholar

23 Chon, C. H.; Kihm, K. D.; Lee, S. P.; Choi, S. U.: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters 87 (2005) 153107, DOI:10.1063/1.209393610.1063/1.2093936Search in Google Scholar

24 Kayhani, M. H.; Soltanzadeh, H.; Heyhat, M. M.; Nazari, M.; Kowsary, F.: Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer 39 (2012) 456–462, DOI:10.1016/j.icheatmasstransfer.2012.01.00410.1016/j.icheatmasstransfer.2012.01.004Search in Google Scholar

25 Lamarsh, J. R.: Introduction to nuclear reactor theory. Addison-Wesley Reading, MA, (1996)Search in Google Scholar

26 Hetrick, D. L.: Dynamics of Nuclear Reactors. The University of Chicago Press Chicago and London (1971)Search in Google Scholar

Received: 2021-02-06
Published Online: 2021-12-13
Published in Print: 2021-12-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany