Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter December 13, 2021

Application research on neutron-gamma discrimination based on BC501A liquid scintillator

Anwendungsforschung zur Neutronen-Gamma-Unterscheidung auf der Grundlage des Flüssigszintillators BC501A
J. Luo and S. Hou
From the journal Kerntechnik

Abstract

Liquid organic scintillators are widely used in non-destructive analysis, which plays an important role in nuclear disarmament verification. This paper focused on studying the neutron-gamma discrimination technology in the fast neutron multiplicity measuring counter based on BC501A liquid scintillation detector. First, the charge comparison method, the zero-crossing time method and the rise time method were compared via the Geant4 and Matlab algorithm, and the result shows that charge comparison has the highest Figure of Merit. Then, a neutron-gamma discrimination system based on the six-probe fast neutron multiplicity counter was built and tested with a conclusion that the mean value of Figure of merit is 1.08, which verify the satisfactory neutron-gamma discriminating capability of the system. Finally, for the uranium samples, the mass are detected by fast neutron multiplicity counter, and the enrichment are measured by the characteristic gamma-ray signals using the system. The experimental results are in good agreement with the actual data.

Abstract

Flüssige organische Szintillatoren werden häufig in der zerstörungsfreien Analyse eingesetzt, die eine wichtige Rolle bei der Überprüfung der nuklearen Abrüstung spielt. In dieser Arbeit wurde die Technologie der Neutronen-Gamma-Diskriminierung in einem schnellen Neutronen-Multiplikationszähler auf der Grundlage des BC501A-Flüssigszintillationsdetektors untersucht. Zunächst wurden die Methode des Ladungsvergleichs, die Methode des Nulldurchgangs und die Methode der Anstiegszeit mit Hilfe des Geant4- und Matlab-Algorithmus verglichen, und das Ergebnis zeigt, dass die Methode des Ladungsvergleichs den höchsten Wert hat. Anschließend wurde ein System zur Neutronen-Gamma-Unterscheidung auf der Grundlage eines schnellen Neutronenmultiplikationszählers mit sechs Sonden gebaut und getestet, wobei sich herausstellte, dass der Mittelwert der Gütezahl 1,08 beträgt, was die zufriedenstellende Neutronen-Gamma-Unterscheidungsfähigkeit des Systems bestätigt. Bei den Uranium-Proben wurde die Masse mit dem schnellen Neutronenmultiplikationszähler ermittelt und die Anreicherung anhand der charakteristischen Gammastrahlensignale mit dem System gemessen. Die experimentellen Ergebnisse stimmen gut mit den tatsächlichen Daten überein.

Funding statement: The authors extend their sincere thanks to The National Nature Science Fund of China Grants Agreement Number 51309228 for the financial support for this work. The authors also thank the Postdoctoral Science Foundation of China for financial supporting this work (No. 2013M542459), and Shaanxi Technology Committee Natural Science Basic Research Project for financial supporting this work (No. 2016JM6026).

Acknowledgements

The authors are grateful to the precious comments made by anonymous reviewers.

References

1 Ensslin, N.; Harker, W. C.; Krick, M. S.; et al.: Application guide to neutron multiplicity counting. Los Alamos Report LA-13422-M (1998)Search in Google Scholar

2 Lintereur, A. T.; Ely, J. H.; Kouzes, R. T.; et al.: Alternatives to Helium-3 for neutron multiplicity counters. IEEE Transactions on Nuclear Science (2012) 547–553Search in Google Scholar

3 Tomanin, A.; Paepen, J.; Schillebeeckx, P.; et al.: Characterization of a cubic EJ-309 liquid scintillator detector. Nuclear Instruments & Methods in Physics Research A 756 (2014) 45 –54, DOI:10.1016/j.nima.2014.03.02810.1016/j.nima.2014.03.028Search in Google Scholar

4 Tomanin, A.; Peerani, P.; Tagziria, H.; et al.: Design of a liquid scintillator-based prototype neutron coincidence counter for Nuclear Safeguards. ESARDA BULLETIN 49 (2013) 28–36Search in Google Scholar

5 Hage, W.; Cifarelli, D. M.: On the factorial moments of the neutron multiplicity distribution of fission cascades. Nuclear Instruments & Methods in Physics Research Section A 236 (1985) 165–177, DOI:10.1016/0168-9002(85)90142-110.1016/0168-9002(85)90142-1Search in Google Scholar

6 Di Fulvio, A.; Shin, T. H.; Jordan, T.; et al.: Passive assay of plutonium metal plates using a fast-neutron multiplicity counter. Nuclear Instruments and Methods in Physics Research A. 855 (2017) 92 – 101, DOI:10.1016/j.nima.2017.02.08210.1016/j.nima.2017.02.082Search in Google Scholar

7 Verbeke, J. M.; Chapline, G. F.; Sheets. S. A.: Distinguishing Pu metal from Pu oxide and determining α-ratio using fast neutron counting. Nuclear Instruments and Methods in Physics Research A. 782 (2015) 126–132, DOI:10.1016/j.nima.2015.01.08810.1016/j.nima.2015.01.088Search in Google Scholar

8 Göttsche, M.; Kirchner, G.: Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples. Nuclear Instruments and Methods in Physics Research A. 798 (2015) 99–106, DOI:10.1016/j.nima.2015.07.00710.1016/j.nima.2015.07.007Search in Google Scholar

9 Li, S.; Qiu, S.; Zhang, Q.; et al.: Fast-neutron multiplicity analysis based on scintillation. Applied Radiation and Isotopes 110 (2016) 53–58, DOI:10.1016/j.apradiso.2015.12.06410.1016/j.apradiso.2015.12.064Search in Google Scholar

10 Zhou, H.; Lin, H.; Liu, G.; et al.: A neutron multiplicity analysis method for uranium samples with liquid scintillators. Nuclear Instruments and Methods in Physics Research A. 797 (2015) 70–76, DOI:10.1016/j.nima.2015.06.02910.1016/j.nima.2015.06.029Search in Google Scholar

11 Nakhostin, M.; Walker, P.: Application of digital zero-crossing technique for neutron-gamma discrimination in liquid organic scintillation detectors. Nuclear Inst & Methods in Physics Research A 621 (2010) 498–501, DOI:10.1016/j.nima.2010.06.25210.1016/j.nima.2010.06.252Search in Google Scholar

12 Chen, Y.; Chen, X.; Zhang, X.; Lei, J.-R.: Study of neutron-gamma discrimination in low energy range (above 40 keVee) by charge comparison method with a BC501A liquid scintillation detector. Chinese Physics C 38 (2014) 28–32, DOI:10.1088/1674-1137/38/3/03600110.1088/1674-1137/38/3/036001Search in Google Scholar

13 Lavagno, A.; Gervino, G.; Marino, C.: High efficiency large volume multiparametric neutron detector. Nuclear Instruments & Methods in Physics Research A 617 (2010) 492–494, DOI:10.1016/j.nima.2009.10.11110.1016/j.nima.2009.10.111Search in Google Scholar

14 Huang,G.; Zhou, C.; Xiao,W.; Fan, H.; Chen, Y.: Research on nuclear pulse waveform discrimination methods. Nuclear Electronics and Detection Technology 37 (2017) 762–766Search in Google Scholar

15 Chen, Y.; Lei, J.-R.; Zhang, X.-D.; Li, A.: Study of neutron-gamma discrimination for 0.4–1 MeV neutrons using the zero-crossing method with a BC501A liquid scintillation detector. Chinese Physics C 37 (2013) 69 –72, DOI:10.1088/1674-1137/37/4/04620210.1088/1674-1137/37/4/046202Search in Google Scholar

16 Lotfi, Y.; Moussavi-Zarandi, S. A.; Ghal-Eh, N.; Pourjafarabadi, E.; Bayat, E.: Neutron-gamma discrimination based on quantum clustering technique. Nuclear Instruments & Methods in Physics Research A 928 (2019) 51–57, DOI:10.1016/j.nima.2019.03.00910.1016/j.nima.2019.03.009Search in Google Scholar

17 Lotfi, Y.; Moussavi-Zarandi, S. A.; Ghal-Eh, N.; Bayat, E.: Optimization of pulse processing parameters for digital neutron-gamma discrimination. Radiation Physics and Chemistry 164 (2019) 503–508, DOI:10.1016/j.radphyschem.2019.10834610.1016/j.radphyschem.2019.108346Search in Google Scholar

18 Nakhostin, M.: Digital discrimination of neutrons and gamma rays in liquid scintillation detectors by using low sampling frequency ADCs. Nuclear Instruments & Methods in Physics Research A 916 (2019) 66–70, DOI:10.1016/j.nima.2018.11.02110.1016/j.nima.2018.11.021Search in Google Scholar

19 Safari, M. J.; Davani, F. A.; Afarideh, H.; Jamili, S.; Bayat, E.: Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutrongamma fields. IEEE transactions on nuclear science 63 (2016) 325–332, DOI:10.1109/TNS. 2016.251440010.1109/TNS.2016.2514400Search in Google Scholar

20 Takaku, D.; Oishi, T.; Baba, M.: Development of neutron-gamma discrimination technique using pattern-recognition method with digital signal processing. Progress in Nuclear Science and Technology 1 (2011) 210–213, DOI:10.15669/pnst.1.21010.15669/pnst.1.210Search in Google Scholar

21 Ridnik, T.; Dubi, C.; Israelashvili, I.; Bagi, J.; Huszti, J.: LIST-mode applications for neutron multiplicity counting, Nuclear Instruments and Methods in Physics Research A 735 (2014) 53–59, DOI:10.1016/j.nima.2013.08.05310.1016/j.nima.2013.08.053Search in Google Scholar

22 Guanren S.: Neutron flight time method and its application. Atomic Energy Press, 2007Search in Google Scholar

23 Zhuo, Z.: Research on a single-probe neutron-gamma discrimination spectrometer. PhD thesis, Chengdu University of Technology, 2017Search in Google Scholar

24 Chadwick, M. B.; Obložinsky´, P.; Herman, M.; et al.: ENDF/B-VII. 0: Next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets 107 (2006) 2931–3060, DOI:10.1016/j.nds.2006.11.00110.1016/j.nds.2006.11.001Search in Google Scholar

25 Lin, H.; Zhang, Q.; Li, S.; Li, J.: Simulation analysis of geometry condition influence on fissile material neutron-gamma pulse shape discrimination. Nuclear Electronics & Detection Technology 2014 (2014) 1135–1139Search in Google Scholar

Received: 2021-02-18
Published Online: 2021-12-13
Published in Print: 2021-12-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany