Accessible Unlicensed Requires Authentication Published by De Gruyter October 23, 2021

Evaluation of radiation interaction parameters of some shape memory alloys

Bewertung der Strahlungs-Wechselwirkungsparameter einiger Formgedächtnislegierungen
S. Tekerek and E. Yıldız
From the journal Kerntechnik


In this study, effective atomic number (Zeff), atomic (σta) and electronic cross section (σte) values of some shape memory alloys (SMA) were calculated at energies 5.9, 6.1, 8, 11.2, 25, 59.543, 75, 112, 149 keV. It has been observed that the obtained values of the calculated parameters vary depending on the photon intensity, chemical constitution and density of the alloys. Calculations were made using the WinXCom program and the graph of the change according to the energy of the obtained results was drawn. The results of this study are thought to be beneficial in the application of various fields.


In dieser Studie werden die effektive Ordnungszahl (Zeff), der atomare (σta) und der elektronische Wirkungsquerschnitt (σte) einiger Formgedächtnislegierungen (SMA) bei Energien von 5,9, 6,1, 8, 11,2, 25, 59,543, 75, 112 und 149 keV berechnet. Es wurde festgestellt, dass diese Werte in Abhängigkeit von der Photonenintensität, der chemischen Zusammensetzung und der Dichte der Legierungen variieren. Die Berechnungen wurden mit dem Programm WinXCom durchgeführt, und es wurde die Änderung der Ergebnisse in Abhängigkeit von der Energie erstellt.


1 Kaya, M.; Atli, K. C.: Şekil Hafizali Alaşimlarda Martensitik Faz Dönüşümü Veşekil Hafiza Mekanizmasi. Journal of Selcuk-Technic 15 (2016)Search in Google Scholar

2 Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M. A.: A review of shape memory alloy research, applications and opportunities. Materials & Design (2018–2015) 56 (2014) 1078–1113, DOI:10.1016/j.matdes.2013.11.08410.1016/j.matdes.2013.11.084Search in Google Scholar

3 Sayyed, M. I.; Akman, F.; Kaçal, M. R.: Experimental investigation of photon attenuation parameters for different binary alloys. Radio-chim. Acta 107 (2019) 339–348, DOI:10.1515/ract-2018-307910.1515/ract-2018-3079Search in Google Scholar

4 Seven, S.; Karahan, I. H.; Bakkaloglu, Ö. F.: The measurement of total mass attenuation coefficients of CoCuNi alloys. J. Quant. Spectrosc. Radiat. Transf. 83 (2004) 237–242, 2004, DOI:10.1016/S0022-4073(03)00118-310.1016/S0022-4073(03)00118-3Search in Google Scholar

5 Han, I.; Demir, L.: Mass attenuation coefficients, effective atomic and electron numbers of Ti and Ni alloys. Radiation Measurements 44 (2009) 289–294, DOI:10.1016/j.radmeas.2009.03.01010.1016/j.radmeas.2009.03.010Search in Google Scholar

6 Demir, D.; Turşucu, A.: Measurement of the effective atomic number of FexCr 1-x and FexNix alloys using scattering of gamma rays. J. Alloys Compd. 581 (2013) 213–216, DOI:10.1016/j.jallcom.2013.07.05710.1016/j.jallcom.2013.07.057Search in Google Scholar

7 Yilmaz, D.; Şahin, Y.; Demir, L.: Studies on mass attenuation coefficient, mass energy absorption coefficient, and kerma for Fe alloys at photon energies of 17.44 to 51.70 keV. Turkish J. Phys. 39 (2015) 81–90, DOI:10.3906/fiz-1408-410.3906/fiz-1408-4Search in Google Scholar

8 Büyükyıldız, M.; Kurudirek, M.; Ekici, M.; İçelli, O.; Karabul, Y.: Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources. Prog. Nucl. Energy, vol. 100, pp. 245–254, 2017, DOI:10.1016/j.pnucene.2017.06.01410.1016/j.pnucene.2017.06.014Search in Google Scholar

9 Nurveren, K.: Demir Esasli Şeki?l Hafizali Alaşimlar. Ömer Halis-demir Üniversitesi Mühendislik Bilimleri Dergisi 2 (2016) 10–16, DOI:10.28948/ngumuh.23938110.28948/ngumuh.239381Search in Google Scholar

10 Ren, L.; Yang, K.; Guo, L.; Chai, H. W.: Preliminary study of anti-infective function of a copper-bearing stainless steel. Materials Science Engineering C 32 (2012) 1204–1209, DOI:10.1016/j.msec.2012.03.00910.1016/j.msec.2012.03.009Search in Google Scholar

11 Shirai, T.; Tsuchiya, H.; Shimizu, T.; Ohtani, K.; Zen, Y.; Tomita, K.: Prevention of pin tract infection with titanium-copper alloys. J. Biomed. Mater. Res. – Part B Appl. Biomater. 91 (2009) 373–380, PMid:19507137; DOI:10.1002/jbm.b.3141210.1002/jbm.b.31412Search in Google Scholar

12 Pederson, R.: Microstructure and Phase Transformation of Ti-6Al-4 V. Licentiate Thesis, Lulea University of Technology, Department of Applied Physics and Mechanical Engineering, (2002) 27–30Search in Google Scholar

13 Chen, M.; Zhang, E.; Zhang, L.: Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Mater. Sci. Eng. C 62 (2016) 350–360, 2016, PMid:26952433; DOI:10.1016/j.msec.2016.01.08110.1016/j.msec.2016.01.081Search in Google Scholar

14 Gerward, L.; Guilbert, N.; Jensen, K. B.; Levring, H.: X-ray absorption in matter. Reengineering XCOM. Technical Note, Radiation Physics and Chemistry 60 (2001) 23 –24, DOI:10.1016/S0969-806X(00)00324-810.1016/S0969-806X(00)00324-8Search in Google Scholar

15 Kaur, T.; Sharma, J.; Singh, T.: Feasibility of Pb-Zn Binary Alloys as Gamma Rays Shielding Materials. International Journal of Pure and Applied Physics 13 (2017) 222–225.Search in Google Scholar

16 Hubbell, J. H.: Review of photon interaction cross section data in the medical and biological context. Phys. Med. Biol. 44 (1999) 1–22, PMid:10071870; DOI:10.1088/0031-9155/44/1/00110.1088/0031-9155/44/1/001Search in Google Scholar

17 Singh, M. P.; Sandhu, B. S.; Singh, B.: Measurement of effective atomic number of composite materials using scattering of c-rays. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 580 (2007) 50–53, 2007, DOI:10.1016/j.nima.2007.05.03710.1016/j.nima.2007.05.037Search in Google Scholar

18 Singh, K.; Sing, H.; Sharma, V, Nathuram, R.: Gamma-ray attenuation coefficients in bismuth borate glasses. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 194 (2002) 1–6, DOI:10.1016/S0168-583X(02)00498-610.1016/S0168-583X(02)00498-6Search in Google Scholar

Received: 2021-06-13
Published Online: 2021-10-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany