Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter December 17, 2021

An application research for near-surface repository of strontium-90 sorption kinetic model on mudrocks

Anwendungsforschung für ein oberflächennahes Endlager mit einem Strontium-90 Sorptionskinetikmodell auf Schlammgestein
Y. Shi, W. Chen, H. Lin, Z. Gao, B. Yang, K. Yang, D. Chen, Z. Wang, Q. Fan, R. Hua, H. Liu and A. Zhang
From the journal Kerntechnik

Abstract

In this study,90Sr was used as the test radionuclide to characterize the sorption kinetics and effects of initial 90Sr activity and remaining 90Sr in solid concentration were simulated for a near-surface repository. The study focused on the sorption characteristics of radionuclides in unsaturated groundwater environment (or vadose zone) is the important information for investigating the near-surface disposal of intermediate and low-level radioactive waste (ILLW). Moreover, the 90Sr sorption experiments reached equilibrium within 56 h, which fit to the first order sorption kinetic model, and the remaining 90Sr in mudrock samples showed obvious sorption equilibrium hysteresis, which fit to the second order sorption kinetic model. Before reaching the maximum sorption capacity, the sorption rate constant increases with 90Sr increasing; the distribution coefficient (Kd) of 56 h decreases with the remaining 90Sr decreasing. In addition, it showed that the slow sorption process dominated before the sorption reaches equilibrium. In fact, a reliable safety assessment methodology for on-going near-surface repository required a lot of the radionuclides parameters with local environment including the radionuclides sorption/desorption rate constant and maximum sorption capacity.

Abstract

In dieser Studie wurde 90Sr als Testradionuklid verwendet, um die Sorptionskinetik zu charakterisieren. Die Auswirkungen der anfänglichen 90Sr-Aktivität und der verbleibenden 90Sr-Konzentration im Feststoff wurden für ein oberflächennahes Endlager simuliert. Die Studie konzentrierte sich auf die Sorptionseigenschaften von Radionukliden in der ungesättigten Grundwasserumgebung (oder vadosen Zone) und liefert wichtige Informationen für die Untersuchung der oberflächennahen Endlagerung mittel- und schwachradioaktiver Abfälle (ILLW). Darüber hinaus erreichten die 90Sr-Sorptionsexperimente innerhalb von 56 Stunden das Gleichgewicht, was dem sorptionskinetischen Modell erster Ordnung entsprach, und das verbleibende 90Sr in den Schlammgesteinsproben zeigte eine offensichtliche Sorptionsgleichgewichtshysterese, was dem sorptionskinetischen Modell zweiter Ordnung entsprach. Vor Erreichen der maximalen Sorptionskapazität steigt die Sorptionsgeschwindigkeitskonstante mit zunehmendem 90Sr; der Verteilungskoeffizient (Kd) von 56 Stunden nimmt mit abnehmendem Rest-90Sr ab. Darüber hinaus zeigte sich, dass der langsame Sorptionsprozess dominiert, bevor die Sorption das Gleichgewicht erreicht. Für eine zuverlässige Methodik zur Sicherheitsbewertung eines laufenden oberflächennahen Endlagers sind viele Parameter der Radionuklide in Verbindung mit der lokalen Umgebung erforderlich, einschließlich der Sorptions-/Desorptionsgeschwindigkeitskonstante und der maximalen Sorptionskapazität der Radionuklide.

Funding statement: This project was major supported by Doctor Initial Financial Project (No. 1410000434), East China University of Technology. The experimental and instrumental analysis of this study was supported by Department of Nuclear Environmental Science, China Institute for Radiation Protection (CIRP), Taiyuan, CHINA. The experimental and instrumental analysis of this study was supported by Department of Nuclear Environmental Science, China Institute for Radiation Protection (CIRP), Taiyuan, CHINA.

References

1 Hansen, F. D.; Hardin, E. L.; Orrell, A.: Geologic disposal options in the USA. International High-Level Radioactive Waste Conference. American Nuclear Society Albuquerque NM (2011) 934–940Search in Google Scholar

2 NEA: NEA Sorption Project. Phase III: Thermodynamic sorption modelling in support of radioactive waste disposal safety cases. OECD-NEA, Paris (2012)Search in Google Scholar

3 SKB: RETROCK Project. Treatment of geosphere retention phenomena in safety assessments. Scientific basis of retention processes and their implementation in safety assessment model (WP2). SKB Technical Report R-04-48. SKB, Stockholm, Sweden (2004)Search in Google Scholar

4 Wu, M. C.; Lee, C. P.; Tsai, S. C.; Pan, C. H.; Tsai, T. L.; Wei, H. J.; Men, L. C.: Study on sorption and diffusion of Sr in crushed and intact basalt and granite investigated in column method. Journal of Radioanalytical and Nuclear Chemistry 304 (2015) 435–441, DOI:10.1007/s10967-014-3889-010.1007/s10967-014-3889-0Search in Google Scholar

5 Lee, C. P., Tsai, S. C.,M. C.Wu, Tsai, T. L. A study on removal of Cs and Sr from aqueous solution by bentonite-alginate microcapsules. Journal of Radioanalytical and Nuclear Chemistry 318 (2018) 2381–2387, DOI:10.1007/s10967-018-6290-610.1007/s10967-018-6290-6Search in Google Scholar

6 IAEA: Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments[R]. International Atomic Energy Agency (2010)Search in Google Scholar

7 IAEA: Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment [R]. International Atomic Energy Agency (2004)Search in Google Scholar

8 ASTM. Standard Test Method for Distribution Coefficients of Inorganic Species by the Batch Method. Am. Soc. Test. Mater. 2010, Γ1733–10, Γ26, 1–8Search in Google Scholar

9 Bruggeman, C.; Vancluysen, J.; Maes, A. New selenium solution speciation method by ion chromatography + gamma counting and its application to FeS2-controlled reducing conditions. Radiochim. Acta 90 (2002) 629–635, DOI:10.1524/ract.2002.90.9-11_2002.62910.1524/ract.2002.90.9-11_2002.629Search in Google Scholar

10 Shi, Z.; Di Toro, D. M.; Allen, H. E.; Ponizovsky, A. A. Modeling Kinetics of Cu and Zn Release from Soils. Environ. Sci. Technol. 39, (2005), 4562–4528. , DOI:10.1021/es048554f10.1021/es048554fSearch in Google Scholar

11 Shi, Z.; Di Toro, D. M.; Allen, H. E.; Sparks, D. L. AWham-Based Kinetics Model for Zn Adsorption and Desorption to Soils. Environ. Sci. Technol. 42 (2008) 5630–5636, DOI:10.1021/es800454y10.1021/es800454ySearch in Google Scholar

12 Shi, Z.; Di Toro, D. M.; Allen, H. E.; Sparks, D. L. General Model for Kinetics of Heavy Metal Adsorption and Desorption on Soils. Environ. Sci. Technol. 47 (2013) 3761–3767, DOI:10.1021/es304524p10.1021/es304524pSearch in Google Scholar

13 Koarashi, J.; Nishimura S.; Nakanishi, T.; et al.: Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident. Chemosphere 165 (2016) 335–341, , PMid:27664523, DOI:10.1016/j.chemosphere.2016.09.04310.1016/j.chemosphere.2016.09.043Search in Google Scholar

14 Kurikami, H.; Malins, A.; Takeishi, M.: Coupling the advection-dispersion equation with fully kinetic reversible/irreversible sorption terms to model radiocesium soil profiles in Fukushima Prefecture. Journal of Environmental Radioactivity. 171 (2017) 99–107, DOI:10.1016/j.jenvrad.2017.01.02610.1016/j.jenvrad.2017.01.026Search in Google Scholar

15 Shi, Y.; Lee, C. P.; Yu, H.; Hu, Y.; Liu, H.; Tien, N. C.; Wang, Y.; Liu, W.; Kong, J.: Study on Advection-Dispersion Behavior for Simulation of HTO and Se Transport in crushed granite. Journal of Radioanalytical and Nuclear Chemistry 328 (2021) 1329–1338, DOI:10.1007/s10967-021-0775-810.1007/s10967-021-0775-8Search in Google Scholar

16 Toride, N.; Leij, F. J.; Van Genuchten, M. Th.: The CXTFIT Code for estimating Transport parameters from Laboratory on field tracer experiments. Version 2.0. Technical Report No. 137 1995Search in Google Scholar

17 Toride, N, Leij, FJ, Van Genuchten, M.Th. The CXTFIT Code for estimating Transport parameters from Laboratory on field tracer experiments. Version 2.1. Technical Report No. 137 1999Search in Google Scholar

18 Dittrich, T. M.; Reimus, P. W.: Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling. Journal of Contaminant Hydrology 175 (2015) 44–59, PMid:25727688, DOI:10.1016/j.jconhyd.2015.02.00410.1016/j.jconhyd.2015.02.004Search in Google Scholar

19 Dittrich, T. M.; Reimus, P.W.: Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance. Journal of Environmental Management 165 (2016) 124–132, DOI:10.1016/j.jenvman.2015.09.01410.1016/j.jenvman.2015.09.014Search in Google Scholar

20 Lee, C. P.; Wie, Y. Y.; Tsai, S. C.; Teng, S. P.; Hsu, C. N.: Diffusion of cesium and selenium in mudrock. Journal of Radioanalytical and Nuclear Chemistry 275 (2009) 761–768, DOI:10.1007/s10967-008-7355-810.1007/s10967-008-7355-8Search in Google Scholar

21 Pan, K.; Ho, K. C.: Progress of Molecular Environmental Science and sub equilibrium sorption theory. Physic 38(2009) 496–503 (in Chinese)Search in Google Scholar

Received: 2021-08-16
Published Online: 2021-12-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany