Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2022

Radioactive waste treatment technology: a review

Gunjanaporn Tochaikul ORCID logo, Archara Phattanasub, Piyatida Khemkham, Kanjanaporn Saengthamthawee, Nuttapong Danthanavat and Nutthapong Moonkum
From the journal Kerntechnik

Abstract

Radioactive waste is generated from activities that utilize nuclear materials such as nuclear medicine or power plants. Depending on their half-life, they emit radiation continuously, ranging from seconds to millions of years. Exposure to ionizing radiation can cause serious harm to humans and the environment. Therefore, special attention is paid to the management of radioactive waste in order to deal with its large quantity and dangerous levels. Current treatment technologies are still being developed to improve efficiency in reducing the hazard level and waste volume, to minimize the impact on living organisms. Thus, the aim of this study was to provide an overview of the global radioactive waste treatment technologies that have been released in 2019–2021.


Corresponding author: Gunjanaporn Tochaikul, Faculty of Radiological Technology, Rangsit University, 52/347 Lak Hok, Mueang Pathum Thani District, Pathum Thani 12000, Thailand, E-mail:

Funding source: Thailand Institute of Nuclear Technology

Award Identifier / Grant number: TINT to University

Acknowledgment

We would like to thank the staffs of Faculty of Radiological Technology, Rangsit University, Thailand for suggestions which helped improvement of the information in this paper. Finally, I would like to thank our co-authors who gather ideas and helped throughout the work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We are very grateful to the Thailand Institute of Nuclear Technology, TINT for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahmed, I., Joni, H.D., and Nowrin Pranti, H. (2019). Study of radioactive waste management of nuclear power plant: prospect of Rooppur Nuclear Power Plant. Global J. Res. Eng.: Mech. Mech. Eng. 19: 69–79. http://engineeringresearch.org/index.php/GJRE/article/view/1999.Search in Google Scholar

Ansari, S.A., Sahoo, G.C., Dey, S., Majumdar, S., and Mohapatra, P.K. (2020). Radiation stability of ceramic tubular membranes containing ammonium molybdophosphate (Amp) for the application of radio-cesium recovery from radioactive wastes. J. Radioanal. Nucl. Chem. 326: 1631–1638. https://doi.org/10.1007/s10967-020-07449-2.Search in Google Scholar

Araujo, L.G., Borba, T.R., Ferreira, R.V.P., Canevesi, R.L.S., Silva, E.A.D., Dellamano, J.C., and Marumo, J.T. (2020). Use of calcium alginate beads and Saccharomyces cerevisiae for biosorption of (241)Am. J. Environ. Radioact. 223–224: 106399. https://doi.org/10.1016/j.jenvrad.2020.106399.Search in Google Scholar

Banala, U.K., Das, N.P.I., and Toleti, S.R. (2021). Microbial interactions with uranium: towards an effective bioremediation approach. Environ. Technol. Innov. 21: 101254. https://doi.org/10.1016/j.eti.2020.101254.Search in Google Scholar

Bennett, D., Higgo, J., and Wickham, S. (2001). Review of waste immobilisation matrices. Nirex Limited, United Kingdom.Search in Google Scholar

Blasdale, W.C. and Slansky, C.M. (1939). The solubility curves of boric acid and the borates of sodium. J. Am. Chem. Soc. 61: 917–920. https://doi.org/10.1021/ja01873a043.Search in Google Scholar

Bolisetty, S. and Mezzenga, R. (2016). Amyloid–carbon hybrid membranes for universal water purification. Nat. Nanotechnol. 11: 365–371. https://doi.org/10.1038/nnano.2015.310.Search in Google Scholar

Bolisetty, S., Coray, N.M., Palika, A., Prenosil, G.A., and Mezzenga, R. (2020). Amyloid hybrid membranes for removal of clinical and nuclear radioactive wastewater. Environ. Sci. Water Res. Technol. 6: 3249–3254. https://doi.org/10.1039/d0ew00693a.Search in Google Scholar

Bratskaya, S., Musyanovych, A., Zheleznov, V., Synytska, A., Marinin, D., Simon, F., and Avramenko, V. (2014). Polymer-inorganic coatings containing nanosized sorbents selective to radionuclides. 1. Latex/cobalt hexacyanoferrate (Ii) composites for cesium fixation. ACS Appl. Mater. Interfaces 6: 16769–16776. https://doi.org/10.1021/am5039196.Search in Google Scholar

Buffle, J. (2006). The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3: 155–158. https://doi.org/10.1071/env3n3_es.Search in Google Scholar

Carter, M., Baker, N. and Burford, R.P. (1995). Polymer encapsulation of arsenic-containing waste. J. Appl. Polym. Sci. 58: 2039–2046. https://doi.org/10.1002/app.1995.070581115.Search in Google Scholar

Chao, Z., Yin-Hua, S., De-Xin, D., Guang-Yue, L., Yue-Ting, C., Nan, H., Hui, Z., Zhong-Ran, D., Feng, L., Jing, S., et al.. (2019). Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum. Chemosphere 224: 316–323. https://doi.org/10.1016/j.chemosphere.2019.01.098.Search in Google Scholar

Chen, D., Zhao, X., and Li, F. (2015). Influence of boron on rejection of trace nuclides by reverse osmosis. Desalination 370: 72–78. https://doi.org/10.1016/j.desal.2015.05.019.Search in Google Scholar

Chen, D., Zhao, X., Li, F., and Zhang, X. (2016). Rejection of nuclides and silicon from boron-containing radioactive waste water using reverse osmosis. Separ. Purif. Technol. 163: 92–99. https://doi.org/10.1016/j.seppur.2016.02.027.Search in Google Scholar

Chen, L., Wang, D., Long, C., and Cui, Z.X. (2019). Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl. Sci. Rep. 9: 19817. https://doi.org/10.1038/s41598-019-56262-9.Search in Google Scholar

Chen, B., Chen, D., and Zhao, X. (2020a). The application of polyethylenimine grafting reverse osmosis membrane in treating boron‐containing low‐level radioactive wastewaters. J. Chem. Technol. Biotechnol. 95: 1085–1092. https://doi.org/10.1002/jctb.6291.Search in Google Scholar

Chen, L., Long, C., Wang, D., and Yang, J. (2020b). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere 242: 125112. https://doi.org/10.1016/j.chemosphere.2019.125112.Search in Google Scholar

Chen, L., Yang, J.-Y., and Wang, D. (2020c). Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J. Clean. Prod. 263: 121491. https://doi.org/10.1016/j.jclepro.2020.121491.Search in Google Scholar

Chen, B., Yu, S., and Zhao, X. (2021a). The separation of radionuclides and silicon from boron-containing radioactive wastewater with modified reverse osmosis membranes. Process Saf. Environ. Protect. 146: 639–646. https://doi.org/10.1016/j.psep.2020.11.023.Search in Google Scholar

Chen, L., Liu, J., Zhang, W., Zhou, J., Luo, D., and Li, Z. (2021b). Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J. Hazard Mater. 413: 125319. https://doi.org/10.1016/j.jhazmat.2021.125319.Search in Google Scholar

Chmielewski, A. and Harasimowicz, M. (1995). Application of ultrafiltration and complexation to the treatment of low-level radioactive effluents. Separ. Sci. Technol. 30: 1779–1789. https://doi.org/10.1080/01496399508010376.Search in Google Scholar

Choi, M.H., Jeong, S.W., Shim, H.E., Yun, S.J., Mushtaq, S., Choi, D.S., Jang, B.S., Yang, J.E., Choi, Y.J., and Jeon, J. (2017). Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem. Commun. (Camb) 53: 3937–3940. https://doi.org/10.1039/c7cc00720e.Search in Google Scholar

Collier, N.C., Milestone, N.B., and Travis, K.P. (2019). A review of potential cementing systems for sealing and support matrices in deep borehole disposal of radioactive waste. Energies 12: 2393. https://doi.org/10.3390/en12122393.Search in Google Scholar

Coumes, C.C.D. and Courtois, S. (2003). Cementation of a low-level radioactive waste of complex chemistry: investigation of the combined action of borate, chloride, sulfate and phosphate on cement hydration using response surface methodology. Cement Concr. Res. 33: 305–316. https://doi.org/10.1016/s0008-8846(02)00943-2.Search in Google Scholar

Cronin, J. and Collier, N. (2012). Corrosion and expansion of grouted Magnox. Mineral. Mag. 76: 2901–2909. https://doi.org/10.1180/minmag.2012.076.8.05.Search in Google Scholar

Das, P., Pathak, N., Sanyal, B., Dash, S., and Kadam, R.M. (2019). Exploring Na0.1sr9.8eu0.1(Po4)6f2 both as a potential phosphor material and host for radioactive waste immobilization. J. Alloys Compd. 810: 151906. https://doi.org/10.1016/j.jallcom.2019.151906.Search in Google Scholar

De Araujo, L.G. and Marumo, J.T. (2018). Reaction of ion exchange resins with Fenton’s reagent. Environments 5: 123. https://doi.org/10.3390/environments5110123.Search in Google Scholar

Deckers, J. (2020). Plasma technology to recondition radioactive waste: tests with simulated bitumen and concrete in a plasma test facility. IOP Conf. Ser.: Mater. Sci. Eng 818: 012006. https://doi.org/10.1088/1757-899x/818/1/012006.Search in Google Scholar

Deng, D., Zhang, L., Dong, M., Samuel, R.E., Ofori-Boadu, A., and Lamssali, M. (2020). Radioactive waste: a review. Water Environ. Res. 92: 1818–1825. https://doi.org/10.1002/wer.1442.Search in Google Scholar

Du, C., Zuo, R., Chen, M., Wang, J., Liu, X., Liu, L., and Lin, Y. (2020). Influence of colloidal Fe(Oh)3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site. Environ. Pollut. 260: 113997. https://doi.org/10.1016/j.envpol.2020.113997.Search in Google Scholar

Duan, J., Ji, H., Zhao, X., Tian, S., Liu, X., Liu, W., and Zhao, D. (2020). Immobilization of U(Vi) by stabilized iron sulfide nanoparticles: water chemistry effects, mechanisms, and long-term stability. Chem. Eng. J. 393: 124692. https://doi.org/10.1016/j.cej.2020.124692.Search in Google Scholar

Dulama, M., Deneanu, N., Dulama, C., and Pavelescu, M. (2008). Experimental studies concerning the semipermeable membrane, 5th ed. 59. Revista de Chimie, pp. 544–549.Search in Google Scholar

Duque-Redondo, E., Yamada, K., and Manzano, H. (2021). Effect of chloride and sulfate in the immobilization of Cs-137 in C-S-H gel. J. Adv. Concr. Technol. 19: 95–105. https://doi.org/10.3151/jact.19.95.Search in Google Scholar

Ellis, R.J., Reinhart, B., Williams, N.J., Moyer, B.A., and Bryantsev, V.S. (2017). Capping the calix: how toluene completes cesium (I) coordination with calix [4] pyrrole. Chem. Commun. 53: 5610–5613. https://doi.org/10.1039/C7CC02347B.Search in Google Scholar

Eskander, S.B. and Saleh, H.M. (2012). Cement mortar-degraded spinney waste composite as a matrix for immobilizing some low and intermediate level radioactive wastes: consistency under frost attack. J. Nucl. Mater. 420: 491–496. https://doi.org/10.1016/j.jnucmat.2011.10.041.Search in Google Scholar

Eskander, S.B., Bayoumi, T.A., and Saleh, H.M. (2012). Performance of aged cement–polymer composite immobilizing borate waste simulates during flooding scenarios. J. Nucl. Mater. 420: 175–181. https://doi.org/10.1016/j.jnucmat.2011.09.029.Search in Google Scholar

Eskander, S.B., Bayoumi, T.A., and Saleh, H.M. (2013). Leaching behavior of cement-natural clay composite incorporating real spent radioactive liquid scintillator. Prog. Nucl. Energy 67: 1–6. https://doi.org/10.1016/j.pnucene.2013.03.022.Search in Google Scholar

Eun, H.-C., Park, S.-Y., Choi, W.-K., Kim, S.-B., Won, H.-J., Chang, N.-O., Lee, S.-B., Park, J.-S., Seo, B.-K., and Kim, K.-C. (2020). A waste-minimized chemical decontamination process for the decontamination of a nuclear reactor coolant system. J. Radioanal. Nucl. Chem. 326: 665–674. https://doi.org/10.1007/s10967-020-07340-0.Search in Google Scholar

Fabry, F., Rehmet, C., Rohani, V., and Fulcheri, L. (2013). Waste gasification by thermal plasma: a review. Waste Biomass Valorization 4: 421–439. https://doi.org/10.1007/s12649-013-9201-7.Search in Google Scholar

Favas, P.J.C., Pratas, J., Mitra, S., Sarkar, S.K., and Venkatachalam, P. (2016). Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci. Total Environ. 568: 350–368. https://doi.org/10.1016/j.scitotenv.2016.06.024.Search in Google Scholar

Fedotov, M. A., Zinoveev, D.V., Grudinsky, P.I., Kovalenko, L.V., and Dyubanov, V.G. (2019). Utilization of red mud and boron-containing liquid radioactive wastes of nuclear power plants. IOP Conf. Ser.: Mater. Sci. Eng 525: 012095. https://doi.org/10.1088/1757-899x/525/1/012095.Search in Google Scholar

Feng, Q., Zhang, Z., Chen, Y., Liu, L., Zhang, Z., and Chen, C. (2013). Adsorption and desorption characteristics of arsenic on soils: kinetics, equilibrium, and effect of Fe (OH)3 colloid, H2SiO3 colloid and phosphate. Procedia Environ. Sci. 18: 26–36. https://doi.org/10.1016/j.proenv.2013.04.005.Search in Google Scholar

Feng, M.L., Sarma, D., Gao, Y.J., Qi, X.H., Li, W.A., Huang, X.Y., and Kanatzidis, M.G. (2018). Efficient removal of [Uo2](2+), Cs(+), and Sr(2+) ions by radiation-resistant gallium thioantimonates. J. Am. Chem. Soc. 140: 11133–11140. https://doi.org/10.1021/jacs.8b07457.Search in Google Scholar

Filippova, E.O., Filippov, A.V., and Shulepov, I.A. (2016). Experimental study of sliding friction for PET track membranes. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Yurga, Russia, 012020.Search in Google Scholar

Foust, H. and Ghosehajra, M. (2010). Sizing an ultrafiltration process that will treat radioactive waste. Separ. Sci. Technol. 45: 1025–1032. https://doi.org/10.1080/01496391003688563.Search in Google Scholar

Fuks, L., Herdzik-Koniecko, I., Kiegiel, K., and Zakrzewska-Koltuniewicz, G. (2020). Management of radioactive waste containing graphite: overview of methods. Energies 13: 4638. https://doi.org/10.3390/en13184638.Search in Google Scholar

Gancarz, I., Bryjak, M., Kujawski, J., Wolska, J., Kujawa, J., and Kujawski, W. (2015). Plasma deposited fluorinated films on porous membranes. Mater. Chem. Phys. 151: 233–242. https://doi.org/10.1016/j.matchemphys.2014.11.059.Search in Google Scholar

Garbil, R., Nieminen, M., Olin, M., Laatikainen-Luntama, J., Wickham, S.M., Doudou, S., Fuller, A.J., Kent, J., Fournier, M., Clarke, S., et al.. (2020). Thermal treatment for radioactive waste minimisation. EPJ Nuclear Sci. Technol. 6: 25. https://doi.org/10.1051/epjn/2019035.Search in Google Scholar

Gardner, L.J., Walling, S.A., Hyatt, N.C. (2020). Hot isostatic pressing: thermal treatment trials of inactive and radioactive simulant UK intermediate level waste. IOP Conf. Ser.: Mater. Sci. Eng 818: 012009. https://doi.org/10.1088/1757-899x/818/1/012009.Search in Google Scholar

Gilliam, T.M. and Wiles, C.C. (1996). Stabilization and solidification of hazardous, radioactive, and mixed wastes. ASTM, West Conshohoken, PA, USA.Search in Google Scholar

Gong, H., Lin, X., Xie, Y., Liu, L., Zhou, J., Liao, H., Shang, R., and Luo, X. (2021). A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium. J. Hazard Mater. 404: 124151. https://doi.org/10.1016/j.jhazmat.2020.124151.Search in Google Scholar

González, D., Amigo, J., and Suárez, F. (2017). Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 80: 238–259. http://doi.org/10.1016/j.rser.2017.05.078.Search in Google Scholar

Gupta, D.K., Vukovic, A., Semenishchev, V.S., Inouhe, M., and Walther, C. (2020). Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. Environ. Sci. Pollut. Res. Int. 27: 3513–3522. https://doi.org/10.1007/s11356-019-07068-9.Search in Google Scholar

Han, J., Hu, L., He, L., Ji, K., Liu, Y., Chen, C., Luo, X., and Tan, N. (2020). Preparation and uranium (Vi) biosorption for tri-amidoxime modified marine fungus material. Environ. Sci. Pollut. Res. Int. 27: 37313–37323. https://doi.org/10.1007/s11356-020-07746-z.Search in Google Scholar

Handley-Sidhu, S., Hriljac, J.A., Cuthbert, M.O., Renshaw, J.C., Pattrick, R.A., Charnock, J.M., Stolpe, B., Lead, J.R., Baker, S., and Macaskie, L.E. (2014). Bacterially produced calcium phosphate nanobiominerals: sorption capacity, site preferences, and stability of captured radionuclides. Environ. Sci. Technol. 48: 6891–6898. https://doi.org/10.1021/es500734n.Search in Google Scholar

Hou, X. (2018). Tritium and 14 C in the environment and nuclear facilities: sources and analytical methods. J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 16: 11–39. https://doi.org/10.7733/jnfcwt.2018.16.1.11.Search in Google Scholar

Hu, N., Lang, T., Ding, D., Hu, J., Li, C., Zhang, H., and Li, G. (2019). Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata. J. Environ. Radioact. 199–200: 58–65. https://doi.org/10.1016/j.jenvrad.2018.12.023.Search in Google Scholar

Hu, D.H., Chen, M.Q., Huang, Y.W., Wei, S.H., and Zhong, X.B. (2020). Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes. Thermochim. Acta 688: 178604. https://doi.org/10.1016/j.tca.2020.178604.Search in Google Scholar

Hu, N., Chen, S., Lang, T., Zhang, H., Chen, W., Li, G., and Ding, D. (2021). A novel method for determining the adequate dose of a chelating agent for phytoremediation of radionuclides contaminated soils by M. cordata. J. Environ. Radioact. 227: 106468. https://doi.org/10.1016/j.jenvrad.2020.106468.Search in Google Scholar

Huang, H. and Tang, L. (2007). Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers. Manag. 48: 1331–1337. https://doi.org/10.1016/j.enconman.2006.08.013.Search in Google Scholar

Huang, G., Chen, J., Dou, P., Yang, X., and Zhang, L. (2019a). In situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste. J. Radioanal. Nucl. Chem. 323: 557–565. https://doi.org/10.1007/s10967-019-06966-z.Search in Google Scholar

Huang, G., Shao, L., He, X., and Jiang, L. (2019b). Treatment of simulated liquid radioactive waste containing cobalt by in-situ co-precipitation of Zn/Al layered double hydroxides. J. Radioanal. Nucl. Chem. 319: 847–854. https://doi.org/10.1007/s10967-018-06402-8.Search in Google Scholar

Huang, Y.-J., Jiang, J., Guo, G.-Y., Zeng, F., and Liu, X.-H. (2020). A wet-oxidation procedure of radioactive waste resin and waste concentrated liquid for 3h and 14c analysis. J. Radioanal. Nucl. Chem. 326: 765–771. https://doi.org/10.1007/s10967-020-07354-8.Search in Google Scholar

Imran, M., Hu, S., Luo, X., Cao, Y., and Samo, N. (2019). Phytoremediation through Bidens pilosa L., a nonhazardous approach for uranium remediation of contaminated water. Int. J. Phytoremediation 21: 752–759. https://doi.org/10.1080/15226514.2018.1556594.Search in Google Scholar

Ivanets, A., Shashkova, I., Kitikova, N., Maslova, M., and Mudruk, N. (2019). New heterogeneous synthesis of mixed Ti-Ca-Mg phosphates as efficient sorbents of 137cs, 90sr and 60co radionuclides. J. Taiwan Inst. Chem. Eng. 104: 151–159. https://doi.org/10.1016/j.jtice.2019.09.001.Search in Google Scholar

Ivanets, A., Kitikova, N., Shashkova, I., Radkevich, A., Stepanchuk, T., Maslova, M., and Mudruk, N. (2020). One-stage adsorption treatment of liquid radioactive wastes with complex radionuclide composition. Water Air Soil Pollut. 231: 151–159. https://doi.org/10.1007/s11270-020-04529-7.Search in Google Scholar

Jeong, S.W. and Choi, Y.J. (2020). Extremophilic microorganisms for the treatment of toxic pollutants in the environment. Molecules 25. https://doi.org/10.3390/molecules25214916.Search in Google Scholar

Jeong, S.W., Jung, J.H., Kim, M.K., Seo, H.S., Lim, H.M., and Lim, S. (2016). The three catalases in Deinococcus radiodurans: only two show catalase activity. Biochem. Biophys. Res. Commun. 469: 443–448. https://doi.org/10.1016/j.bbrc.2015.12.017.Search in Google Scholar

Jin, M., Xiao, A., Zhu, L., Zhang, Z., Huang, H., and Jiang, L. (2019). The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 9: 138. https://doi.org/10.1186/s13568-019-0862-x.Search in Google Scholar

Khani, A., Rasulzade, H., and Aqapur, N. (2020). Green removal of hospital-medical wastes by designed integrated pyrolysis incineration system. J. Chem. Lett. 1: 89–92. https://doi.org/10.22034/JCHEMLETT.2020.120303.Search in Google Scholar

Khelurkar, N., Shah, S., and Jeswani, H. (2015). A review of radioactive waste management. In: International Conference on Technologies for Sustainable Development (ICTSD). IEEE, pp. 1–6.Search in Google Scholar

Kichanov, S.E., Kenessarin, M., Balasoiu, M., Kozlenko, D.P., Nicu, M., Ionascu, L., Dragolici, A.C., Dragolici, F., Nazarov, K., and Abdurakhimov, B. (2020). Studies of the processes of hardening of cement materials for the storage of aluminum radioactive waste by neutron radiography. Phys. Part. Nucl. Lett. 17: 73–78. https://doi.org/10.1134/s1547477120010100.Search in Google Scholar

Kim, K.-W., Foster, R.I., Kim, J., Sung, H.-H., Yang, D., Shon, W.-J., Oh, M.-K., and Lee, K.-Y. (2019). Glass-ceramic composite wasteform to immobilize and stabilize a uranium-bearing waste generated from treatment of a spent uranium catalyst. J. Nucl. Mater. 516: 238–246. https://doi.org/10.1016/j.jnucmat.2019.01.005.Search in Google Scholar

Kitikova, N.V., Ivanets, A.I., Shashkova, I.L., Radkevich, A.V., Shemet, L.V., Kul’bitskaya, L.V., and Sillanpää, M. (2017). Batch study of 85 Sr adsorption from synthetic seawater solutions using phosphate sorbents. J. Radioanal. Nucl. Chem. 314: 2437–2447. https://doi.org/10.1007/s10967-017-5592-4.Search in Google Scholar

Kolhe, N., Zinjarde, S., and Acharya, C. (2020). Impact of uranium exposure on marine yeast, Yarrowia lipolytica: insights into the yeast strategies to withstand uranium stress. J. Hazard Mater. 381: 121226. https://doi.org/10.1016/j.jhazmat.2019.121226.Search in Google Scholar

Korolkov, I., Mashentseva, A., Güven, O., and Zdorovets, M. (2017). Modification of track-etched PET membranes by graft copolymerization of acrylic acid and N-vinylimidazole. Petrol. Chem. 57: 1233–1241. https://doi.org/10.1134/s0965544117130060.Search in Google Scholar

Korolkov, I.V., Mashentseva, A.A., Güven, O., Gorin, Y.G., and Zdorovets, M.V. (2018). Protein fouling of modified microporous Pet track-etched membranes. Radiat. Phys. Chem. 151: 141–148. https://doi.org/10.1016/j.radphyschem.2018.06.007.Search in Google Scholar

Kosaka, K., Asami, M., Kobashigawa, N., Ohkubo, K., Terada, H., Kishida, N., and Akiba, M. (2012). Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake. Water Res. 46: 4397–4404. https://doi.org/10.1016/j.watres.2012.05.055.Search in Google Scholar

Kulagina, T., Kulagin, V., Nikiforova, E., Prikhodov, D., Shimanskiy, A., and Li, F. (2019a). Inclusion of liquid radioactive waste into a cement compound with an additive of multilayer carbon nanotubes. IOP Conf. Series: Earth Environ. Sci. 227. https://doi.org/10.1088/1755-1315/227/5/052030.Search in Google Scholar

Kulagina, T., Kulagin, V., Nikiforova, E., Prikhodov, D., Alexander, S., and Li, F. (2019b). Inclusion of liquid radioactive waste into a cement compound with an additive of multilayer carbon nanotubes. IOP Conf. Series: Earth Environ. Sci. 227: 052030. https://doi.org/10.1088/1755-1315/227/5/052030.Search in Google Scholar

Kurakhmedov, A., Ivanov, I., Aleksandrenko, V., Kozlovskiy, A., Arkhangelsky, E., and Zdorovets, M. (2017). Asymmetrical track-etched membranes prepared by double-sided irradiation on the Dc-60 cyclotron. Petrol. Chem. 57: 489–497. https://doi.org/10.1134/s0965544117060056.Search in Google Scholar

Lai, J.L., Liu, Z.W., Li, C., and Luo, X.G. (2021). Analysis of accumulation and phytotoxicity mechanism of uranium and cadmium in two sweet potato cultivars. J. Hazard Mater. 409: 124997. https://doi.org/10.1016/j.jhazmat.2020.124997.Search in Google Scholar

Lead, J.R. and Wilkinson, K.J. (2006). Aquatic colloids and nanoparticles: current knowledge and future trends. Environ. Chem. 3: 159–171. https://doi.org/10.1071/en06025.Search in Google Scholar

Lee, W.E., Ojovan, M.I., Stennett, M.C., and Hyatt, N.C. (2013). Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 105: 3–12. https://doi.org/10.1179/174367606x81669.Search in Google Scholar

Lee, K.Y., Lee, S.H., Lee, J.E., and Lee, S.Y. (2019). Biosorption of radioactive cesium from contaminated water by microalgae Haematococcus pluvialis and Chlorella vulgaris. J. Environ. Manag. 233: 83–88. https://doi.org/10.1016/j.jenvman.2018.12.022.Search in Google Scholar

Li, F. and Duan, X. (2006). Applications of layered double hydroxides. Layered Double Hydroxides 119: 193–223. https://doi.org/10.1002/chin.200624226.Search in Google Scholar

Li, J., Liu, K., Yan, S., Li, Y., and Han, D. (2016). Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag. 58: 260–269. https://doi.org/10.1016/j.wasman.2016.06.011.Search in Google Scholar

Li, C., Wang, M., Luo, X., Liang, L., Han, X., and Lin, X. (2019). Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: potential application to phytoremediation and environmental monitoring. J. Environ. Radioact. 198: 43–49. https://doi.org/10.1016/j.jenvrad.2018.12.018.Search in Google Scholar

Luca, V., Bianchi, H.L., and Manzini, A.C. (2012). Cation immobilization in pyrolyzed simulated spent ion exchange resins. J. Nucl. Mater. 424: 1–11. https://doi.org/10.1016/j.jnucmat.2012.01.004.Search in Google Scholar

Malkovsky, V. and Pek, A. (2009). Effect of colloids on transfer of radionuclides by subsurface water. Geol. Ore Deposits 51: 79–92. https://doi.org/10.1134/s1075701509020019.Search in Google Scholar

Meng, X., Hua, Z., Dermatas, D., Wang, W., and Kuo, H.Y. (1998). Immobilization of mercury(Ii) in contaminated soil with used tire rubber. J. Hazard Mater. 57: 231–241. https://doi.org/10.1016/s0304-3894(97)00091-5.Search in Google Scholar

Merroun, M.L. and Selenska-Pobell, S. (2008). Bacterial interactions with uranium: an environmental perspective. J. Contam. Hydrol. 102: 285–295. https://doi.org/10.1016/j.jconhyd.2008.09.019.Search in Google Scholar

Missana, T., Alonso, Ú., García-Gutiérrez, M., and Mingarro, M. (2008). Role of bentonite colloids on europium and plutonium migration in a granite fracture. Appl. Geochem. 23: 1484–1497. https://doi.org/10.1016/j.apgeochem.2008.01.008.Search in Google Scholar

Natarajan, V., Karunanidhi, M., and Raja, B. (2020). A critical review on radioactive waste management through biological techniques. Environ. Sci. Pollut. Res. Int. 27: 29812–29823. https://doi.org/10.1007/s11356-020-08404-0.Search in Google Scholar

Nilchi, A., Ghanadi Maragheh, M., Khanchi, A., Farajzadeh, M., and Aghaei, A. (2004). Synthesis and ion-exchange properties of crystalline titanium and zirconium phosphates. J. Radioanal. Nucl. Chem. 261: 393–400. https://doi.org/10.1023/b:jrnc.0000034876.90837.fa.Search in Google Scholar

Noli, F., Kapashi, E., and Kapnisti, M. (2019). Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes. J. Environ. Chem. Eng. 7. https://doi.org/10.1016/j.jece.2019.102985.Search in Google Scholar

O’Connor, D., Peng, T., Zhang, J., Tsang, D.C., Alessi, D.S., Shen, Z., Bolan, N.S., and Hou, D. (2018). Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619: 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132.Search in Google Scholar

Ojovan, M.I., Lee, W.E., and Kalmykov, S.N. (2019). An introduction to nuclear waste immobilisation. Elsevier, London, United Kingdom.Search in Google Scholar

Ojovan, M.I. (2020). On alteration rate renewal stage of nuclear waste glass corrosion. MRS Adv. 5: 111–120. https://doi.org/10.1557/adv.2020.36.Search in Google Scholar

Pancholi, K.C., Kaushik, C.P., Suprabha, Agarwal, S., Solankar, S.K., Mishra, S.K., Tomar, N.S., Bhandari, S., Ghorui, S., Bhardwaj, R.L., et al. (2020). Plasma pyrolysis and incineration for low level radioactive solid wastes. BARC Newsletter 52: 6–10.Search in Google Scholar

Pedersen, C.J. (1967). Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89: 7017–7036. https://doi.org/10.1021/ja01002a035.Search in Google Scholar

Perić, A., Plecas, I., and Kostadinović, A. (1992). Influence of ageing on the effective coefficient of the radionuclides Cs-137 and Co-60 in the system: bitumen-spent ion-exchange resins. Prog. Nucl. Energy 27: 1–4. http://doi.org/10.1016/0149-1970(92)90012-R.Search in Google Scholar

Pioro, I., Duffey, R.B., Kirillov, P.L., Pioro, R., Zvorykin, A., and Machrafi, R. (2019). Current status and future developments in nuclear-power industry of the world. J. Nucl. Eng. Radiat. Sci. 5. https://doi.org/10.1115/1.4042194.Search in Google Scholar

Pollmann, K., Raff, J., Merroun, M., Fahmy, K., and Selenska-Pobell, S. (2006). Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24: 58–68. https://doi.org/10.1016/j.biotechadv.2005.06.002.Search in Google Scholar

Porteous, A. (2001). Energy from waste incineration–a state of the art emissions review with an emphasis on public acceptability. Appl. Energy 70: 157–167. https://doi.org/10.1016/s0306-2619(01)00021-6.Search in Google Scholar

Prado, E.S.P., Dellamano, J.C., Carneiro, A.L.G., Santos, R.C., Petraconi, G., and Potiens, A.J. (2017). Technical feasibility study on volumetric reduction of radioactive wastes using plasma technology. In: International Nuclear Atlantic Conference, pp. 22–27. http://repositorio.ipen.br/handle/123456789/28326.Search in Google Scholar

Prado, E.S.P., Miranda, F.S., De Araujo, L.G., Petraconi, G., and Baldan, M.R. (2020a). Thermal plasma technology for radioactive waste treatment: a review. J. Radioanal. Nucl. Chem. 325: 331–342.Search in Google Scholar

Prado, E.S.P., Miranda, F.S., Petraconi, G., and Potiens, A.J. (2020b). Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiat. Phys. Chem. 168. https://doi.org/10.1016/j.radphyschem.2019.108625.Search in Google Scholar

Qi, X., Hao, X., Chen, X., Xiao, S., Chen, S., Luo, X., Wang, S., Tian, J., Wang, D., and Tang, Y. (2018). Integrated phytoremediation system for uranium-contaminated soils by adding a plant growth promoting bacterial mixture and mowing grass. J. Soils Sediments 19: 1799–1808. https://doi.org/10.1007/s11368-018-2182-1.Search in Google Scholar

Rahman, R., Ibrahium, H., and Hung, Y.-T. (2011). Liquid radioactive wastes treatment: a review. Water 3: 551–565. https://doi.org/10.3390/w3020551.Search in Google Scholar

Rajpurohit, Y.S., Bihani, S.C., Waldor, M.K., and Misra, H.S. (2016). Phosphorylation of Deinococcus radiodurans RecA regulates its activity and may contribute to radioresistance. J. Biol. Chem. 291: 16672–16685. https://doi.org/10.1074/jbc.m116.736389.Search in Google Scholar

Razab, M.K.A.A., Mansor, M.S., Noor, A.A.M., Latif, N.F.F.A., Rozi, S.M., Jaafar, K.N., and Jamaludin, F. (2020). Characterization of Go:I-131 for radioactive clinical waste water management in nuclear medicine. Mater. Sci. Forum 1010: 561–566. https://doi.org/10.4028/www.scientific.net/msf.1010.561.Search in Google Scholar

Real, J., Persin, F., and Camarasa-Claret, C. (2002). Mechanisms of desorption of 134cs and 85sr aerosols deposited on urban surfaces. J. Environ. Radioact. 62: 1–15. https://doi.org/10.1016/s0265-931x(01)00136-9.Search in Google Scholar

Ren, C.G., Kong, C.C., Wang, S.X., and Xie, Z.H. (2019). Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 217: 773–779. https://doi.org/10.1016/j.chemosphere.2018.11.085.Search in Google Scholar

Roh, C., Kang, C., and Lloyd, J.R. (2015). Microbial bioremediation processes for radioactive waste. Kor. J. Chem. Eng. 32: 1720–1726. https://doi.org/10.1007/s11814-015-0128-5.Search in Google Scholar

Romanchuk, A.Y., Slesarev, A.S., Kalmykov, S.N., Kosynkin, D.V., and Tour, J.M. (2013). Graphene oxide for effective radionuclide removal. Phys. Chem. Chem. Phys. 15: 2321–2327. https://doi.org/10.1039/c2cp44593j.Search in Google Scholar

Rudenko, L. and Khan, V. (2005). Membrane methods for treating liquid radioactive wastes from the shelter to remove transuranic elements. Radiochemistry 47: 89–92. https://doi.org/10.1007/s11137-005-0054-1.Search in Google Scholar

Ruiz-Fresneda, M.A., Lopez-Fernandez, M., Martinez-Moreno, M.F., Cherkouk, A., Ju-Nam, Y., Ojeda, J.J., Moll, H., and Merroun, M.L. (2020). Molecular binding of Eu(III)/Cm(III) by Stenotrophomonas bentonitica and its impact on the safety of future geodisposal of radioactive waste. Environ. Sci. Technol. 54: 15180–15190. https://doi.org/10.1021/acs.est.0c02418.Search in Google Scholar

Šabanović, E., Muhić-Šarac, T., Nuhanović, M., and Memić, M. (2019). Biosorption of uranium(Vi) from aqueous solution by Citrus limon peels: kinetics, equilibrium and batch studies. J. Radioanal. Nucl. Chem. 319: 425–435. http://doi.org/10.1007/s10967-018-6358-3.Search in Google Scholar

Saleh, H.M. and Eskander, S.B. (2012). Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes. J. Nucl. Mater. 430: 106–113. https://doi.org/10.1016/j.jnucmat.2012.06.042.Search in Google Scholar

Saleh, H.M. and Eskander, S.B. (2019). Impact of water flooding on hard cement-recycled polystyrene composite immobilizing radioactive sulfate waste simulate. Constr. Build. Mater. 222: 522–530. https://doi.org/10.1016/j.conbuildmat.2019.06.173.Search in Google Scholar

Saleh, H.M., El-Sheikh, S.M., Elshereafy, E.E., and Essa, A.K. (2019). Performance of cement-slag-titanate nanofibers composite immobilized radioactive waste solution through frost and flooding events. Constr. Build. Mater. 223: 221–232. https://doi.org/10.1016/j.conbuildmat.2019.06.219.Search in Google Scholar

Saleh, H.M., Moussa, H.R., Mahmoud, H.H., El-Saied, F.A., Dawoud, M., and Abdel Wahed, R.S. (2020). Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog. Nucl. Energy 118. https://doi.org/10.1016/j.pnucene.2019.103147.Search in Google Scholar

Saleh, H.M. (2012). Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl. Eng. Des. 242: 425–432. https://doi.org/10.1016/j.nucengdes.2011.10.023.Search in Google Scholar

Sanchez-Castro, I., Martinez-Rodriguez, P., Jroundi, F., Solari, P.L., Descostes, M., and Merroun, M.L. (2020). High-efficient microbial immobilization of solved U(Vi) by the Stenotrophomonas strain Br8. Water Res. 183: 116110. https://doi.org/10.1016/j.watres.2020.116110.Search in Google Scholar

Santana, L.P., Cordeiro, T.C. (2016). Management of radioactive waste: a review. Proc. Intl. Acad. Ecol. Environ. Sci. 6: 38–43.Search in Google Scholar

Saudi, H.A., Abd-Allah, W.M., and Shaaban, K.S. (2020). Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci. Mater. Electron. 31: 6963–6976. https://doi.org/10.1007/s10854-020-03261-6.Search in Google Scholar

Sayenko, S.Yu., Shkuropatenko, V.A., Pylypenko, A.V., Zykova, A.V., Karsim, S.A., Andrieieva, V.V., and Moshta, S.V. (2020). Experimental study on radioactive waste immobilization in low temperature magnisium-potassium phosphate ceramic matrix. Probl. Atom. Sci. Technol. 2: 103–113. https://doi.org/10.46813/2020-126-103.Search in Google Scholar

Sha, Y.H., Hu, N., Wang, Y.D., Chen, S.Y., Zou, C., Dai, Z.R., Zhang, H., and Ding, D.X. (2019). Enhanced phytoremediation of uranium contaminated soil by artificially constructed plant community plots. J. Environ. Radioact. 208–209: 106036. https://doi.org/10.1016/j.jenvrad.2019.106036.Search in Google Scholar

Song, W., Wang, X., Sun, Y., Hayat, T., and Wang, X. (2019). Bioaccumulation and transformation of U(Vi) by sporangiospores of Mucor circinelloides. Chem. Eng. J. 362: 81–88. https://doi.org/10.1016/j.cej.2019.01.020.Search in Google Scholar

Subramani, A., Cryer, E., Liu, L., Lehman, S., Ning, R.Y., and Jacangelo, J.G. (2012). Impact of intermediate concentrate softening on feed water recovery of reverse osmosis process during treatment of mining contaminated groundwater. Separ. Purif. Technol. 88: 138–145. https://doi.org/10.1016/j.seppur.2011.12.010.Search in Google Scholar

Suh, J.W., Sohn, S.Y., and Lee, B.K. (2020). Patent clustering and network analyses to explore nuclear waste management technologies. Energy Policy 146. https://doi.org/10.1016/j.enpol.2020.111794.Search in Google Scholar

Sun, Y., Shao, D., Chen, C., Yang, S., and Wang, X. (2013). Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 47: 9904–9910. https://doi.org/10.1021/es401174n.Search in Google Scholar

Szajerski, P., Celinska, J., Gasiorowski, A., Anyszka, R., Walendziak, R., and Lewandowski, M. (2020). Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers. J. Clean. Prod. 271. https://doi.org/10.1016/j.jclepro.2020.122563.Search in Google Scholar

Szajerski, P. (2021). Solidification of radioactive waste in lignite slag and bismuth oxide filled elastomer matrices: release mechanism, immobilization efficiency, long term radiation stability and aging. Chem. Eng. J. 404. https://doi.org/10.1016/j.cej.2020.126495.Search in Google Scholar

Tan, Y.P., Zhang, X.W., Lv, J.W., Tang, D.S., and Su, Q. (2013). Transformation behaviors of U (Vi) on irons hydroxide colloids. Adv. Mater. Res.Trans Tech Publ 734: 2563–2567. https://doi.org/10.4028/www.scientific.net/amr.734-737.2563.Search in Google Scholar

Tanner, K., Molina-Menor, E., Latorre-Perez, A., Vidal-Verdu, A., Vilanova, C., Pereto, J., and Porcar, M. (2020). Extremophilic microbial communities on photovoltaic panel surfaces: a two-year study. Microb. Biotechnol. 13: 1819–1830. https://doi.org/10.1111/1751-7915.13620.Search in Google Scholar

Tijing, L.D., Woo, Y.C., Johir, M.A.H., Choi, J.-S., and Shon, H.K. (2014). A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation. Chem. Eng. J. 256: 155–159. https://doi.org/10.1016/j.cej.2014.06.076.Search in Google Scholar

Tzeng, C.-C., Kuo, Y.-Y., Huang, T.-F., Lin, D.-L., and Yu, Y.-J. (1998). Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard Mater. 58: 207–220. https://doi.org/10.1016/s0304-3894(97)00132-5.Search in Google Scholar

Udalov, I.V., Peresadko, V.A., Polevich, O.V., and Kononenko, A.V. (2020). Restoration of soils contaminated with radionuclides by phytoredomediation method. Past 2: 151–155. https://doi.org/10.46813/2020-126-151.Search in Google Scholar

Utton, C. and Godfrey, I. (2010). Review of stability of cemented grouted ion-exchange materials, sludges and flocs, Nnl Report to NDA RWMD NNL (09), 10212.Search in Google Scholar

Valsala, T., Sonavane, M., Kore, S., Sonar, N., De, V., Raghavendra, Y., Chattopadyaya, S., Dani, U., Kulkarni, Y., and Changrani, R. (2011). Treatment of low level radioactive liquid waste containing appreciable concentration of Tbp degraded products. J. Hazard Mater. 196: 22–28. https://doi.org/10.1016/j.jhazmat.2011.08.065.Search in Google Scholar

Vieira, L.C., De Araujo, L.G., De Padua Ferreira, R.V., Da Silva, E.A., Canevesi, R.L.S., and Marumo, J.T. (2019). Uranium biosorption by Lemna sp. and Pistia stratiotes. J. Environ. Radioact. 203: 179–186. https://doi.org/10.1016/j.jenvrad.2019.03.019.Search in Google Scholar

Walling, S.A., Kauffmann, M.N., Gardner, L.J., Bailey, D.J., Stennett, M.C., Corkhill, C.L., and Hyatt, N.C. (2021). Characterisation and disposability assessment of multi-waste stream in-container vitrified products for higher activity radioactive waste. J. Hazard Mater. 401: 123764. https://doi.org/10.1016/j.jhazmat.2020.123764.Search in Google Scholar

Wang, P. and Chung, T.-S. (2015). Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J. Membr. Sci. 474: 39–56. https://doi.org/10.1016/j.memsci.2014.09.016.Search in Google Scholar

Wang, J. and Zhuang, S. (2020). Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl. Eng. Technol. 52: 328–336. https://doi.org/10.1016/j.net.2019.08.001.Search in Google Scholar

Wang, X., Yu, S., Jin, J., Wang, H., Alharbi, N.S., Alsaedi, A., Hayat, T., and Wang, X. (2016). Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci. Bull. 61: 1583–1593. https://doi.org/10.1007/s11434-016-1168-x.Search in Google Scholar

Wang, X., Chen, L., Wang, L., Fan, Q., Pan, D., Li, J., Chi, F., Xie, Y., Yu, S., and Xiao, C. (2019). Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 62: 933–967. https://doi.org/10.1007/s11426-019-9492-4.Search in Google Scholar

Wattal, P.K. (2013). Indian programme on radioactivewaste management. Indian Academy of Sciences 38: 849–857. https://doi.org/10.1007/s12046-013-0170-0.Search in Google Scholar

Xiao-Teng, Z., Dong-Mei, J., Yi-Qun, X., Jun-Chang, C., Shuai, H., and Liang-Shu, X. (2019). Adsorption of uranium(VI) from aqueous solution by modified rice stem. J. Chem. 2019: 1–10. https://doi.org/10.1155/2019/6409504.Search in Google Scholar

Yang, H., Sun, L., Zhai, J., Li, H., Zhao, Y., and Yu, H. (2014). In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A 2: 326–332. https://doi.org/10.1039/c3ta13548a.Search in Google Scholar

Yılmaz, D. and Gürol, A. (2020). Efficient removal of iodine-131 from radioactive waste by nanomaterials. Instrum. Sci. Technol. 49: 45–54. http://doi.org/10.1080/10739149.2020.1775094.Search in Google Scholar

Yiqian, W., Xiaoqin, N., Cheng, W., Dong, F., Zhang, Y., Ding, C., Liu, M., Asiri, A.M., and Marwani, H.M. (2019). A synergistic biosorption and biomineralization strategy for Kocuria sp. to immobilizing U(Vi) from aqueous solution. J. Mol. Liq. 275: 215–220. https://doi.org/10.1016/j.molliq.2018.11.079.Search in Google Scholar

Zakrzewska-Trznadel, G., Harasimowicz, M., and Chmielewski, A.G. (1999). Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. J. Membr. Sci. 163: 257–264. https://doi.org/10.1016/s0376-7388(99)00171-4.Search in Google Scholar

Zdorovets, M.V., Yeszhanov, A.B., Korolkov, I.V., Güven, O., Dosmagambetova, S.S., Shlimas, D.I., Zhatkanbayeva, Z.K., Zhidkov, I.S., Kharkin, P.V., Gluchshenko, V.N., et al.. (2020). Liquid low-level radioactive wastes treatment by using hydrophobized track-etched membranes. Prog. Nucl. Energy 118. https://doi.org/10.1016/j.pnucene.2019.103128.Search in Google Scholar

Zhang, A., Zhang, W., Wang, Y., and Ding, X. (2016). Effective separation of cesium with a new silica-calix [4] biscrown material by extraction chromatography. Separ. Purif. Technol. 171: 17–25. https://doi.org/10.1016/j.seppur.2016.07.011.Search in Google Scholar

Zhang, J., Chen, X., Zhou, J., and Luo, X. (2020). Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae. J. Hazard Mater. 385: 121588. https://doi.org/10.1016/j.jhazmat.2019.121588.Search in Google Scholar

Zhao, P., Ni, G., Jiang, Y., Chen, L., Chen, M., and Meng, Y. (2010). Destruction of inorganic municipal solid waste incinerator fly ash in a Dc arc plasma furnace. J. Hazard Mater. 181: 580–585. https://doi.org/10.1016/j.jhazmat.2010.05.052.Search in Google Scholar

Zinicovscaia, I., Safonov, A., Zelenina, D., Ershova, Y., and Boldyrev, K. (2020). Evaluation of biosorption and bioaccumulation capacity of cyanobacteria Arthrospira (spirulina) platensis for radionuclides. Algal Res. 51. https://doi.org/10.1016/j.algal.2020.102075.Search in Google Scholar

Received: 2021-09-27
Published Online: 2022-02-14
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston