Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 29, 2022

Safety assessment and management of spent nuclear fuel for TRIGA mark II research reactor

Beya Heritier , Rowayda F. Mahmoud , Ahmed El Saghir , Mohamed K. Shaat EMAIL logo and Alya Badawi
From the journal Kerntechnik

Abstract

Democratic Republic of Congo (DRC) has a TRIGA mark II research reactor called TRICO II, its design power is 1.00 MW. The reactor was in extended shutdown state since November 2004. The DRC government has decided to resume its operation using the last uploaded core. One of the safety features to be determined before putting the spent fuel into the reactor core is the calculation of its excess reactivity, radionuclide inventories as well as its discharge burn-up. The spent fuel was modeled and simulated by using Monte Carlo software, MCNPX code. The input data and the horizontal and vertical modeling for the fuel pins, control rods and moderator were done. The model results were validated by calculating the effective delayed neutron fraction (β eff) and the worth of the control rods. The results of the criticality and fuel burn-up were compared with the reference design parameters and with the experimental measurements and it were found in good agreement. The calculations showed that the last uploaded core has 47.00 g of 235U which represent only 2% of fissile materials. The depletion analysis results showed that the highest radio-activities come from 151Sm, 137Cs, 90Y, 90Sr and 85Kr.


Corresponding author: Mohamed K. Shaat, Reactors Department, Atomic Reactors Division, Nuclear Research Center, Egyptian Atomic, Energy Authority (EAEA), Cairo, Egypt, E-mail:

Acknowledgments

The authors would like to thank and acknowledge the IAEA, Nuclear and Radiation Engineering Department, Faculty of Engineering, Alexandria University and Egyptian atomic Energy Authority (EAEA) for the organization and management the AFRA program for master’s degree in Nuclear Science and Technology. Also, the authors would like to express and acknowledge the Kinshasa Nuclear Research Centre (CREN-K) and all the staff of TRICO II research reactor for providing us with all the necessary information related to the TRICO II reactor.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alyson, K. (2012). Determination of a calculation bias in the MCNP model of the OSTR, Master thesis. Oregon State University, Oregon, USA.Search in Google Scholar

Antti, R. and Kotiluoto, P. (2016). FIR1TRIGA activity inventories for decommissioning planning, 194. VTT Technical Research Centre of Finland Ltd, pp. 28–38.Search in Google Scholar

Böck, H. and Khan, R. (2010). Neutronics analysis of the TRIGA Vienna mixed core. Vienna, Austria, Vienna University of Technology/Atominstitute stadionallee 2.Search in Google Scholar

Beya, H. (2019). Safety assessment and cost estimates for the decommissioning of D. R. Congo research reactor (TRICO II), M.Sc. Thesis dissertation, Alexandria, Egypt, Nuclear & Radiation Eng. Dept., Fac. Eng., Alex. Univ.Search in Google Scholar

Borio di Tigliole, A., Cammi, A., Clemenza, M., Memoli, V., Pattavina, L., and Previtali, E. (2010). Benchmark evaluation of reactor critical parameters and neutron fluxes distributions at zero power for the TRIGA Mark II reactor of the University of pavia using the Monte Carlo code MCNP. Prog. Nucl. Energy 52: 494–502, https://doi.org/10.1016/j.pnucene.2009.11.002.Search in Google Scholar

Cren, K. (2008). Logbook of TRICO II operating, Kinshasa, Centre Regional Etudes Nucl. Kinshasa (CREN-K).Search in Google Scholar

Davide, C. (2013). Development and experimental validation of a Monte Carlo simulation model for the TRIGA mark II reactor, Ph.D. Thesis. University adeglistudi Milano-Bicocca, Milan, Italy.Search in Google Scholar

Goorley, T. (2004). Criticality calculations with MCNP5: A primer, 2nd ed. USA: Los Alamos National Laboratory, X-5, LA-UR-04-0294.Search in Google Scholar

Haeck, W. and Verboomen, B. (2007). An optimum approach to Monte Carlo burn-up. Nucl. Sci. Eng. 156: 180–196, https://doi.org/10.13182/NSE07-A2695.Search in Google Scholar

Huda, M., Suaiya, J., and Obara, T. (2008). Burn-up analysis and in-core fuel management study of the 3 MW TRIGA Mark II research reactor. Annals of Nuclear Energy 35: 141–147, https://doi.org/10.1016/j.anucene.2007.05.013.Search in Google Scholar

Monte Carlo Team (2003). MCNP – a general Monte Carlo N-particle transport code, overview and theory. UAS, Los Alamos National Laboratory.Search in Google Scholar

Mizanur, R., Rahman, A., Hossain, S., Das, P.K., Ali, A., Soner, A.M., and Abdullah-Al-Mahmud (2021). Calculation of fuel burn-up and excess reactivity using TRIGLAV code for BAEC TRIGA research reactor. Nucl. Energy Sci Tech 14: 291–301, https://doi.org/10.1504/IJNEST.2020.117699.Search in Google Scholar

Mohammed, M., Abdelouahed, C., and Abdelaziz, D. (2015). Calculation of kinetic parameters of the Moroccan TRIGA mark-II reactor using the Monte Carlo code MCNP. Adv. Appl. Phy 3: 1–8, https://doi.org/10.12988/AAP.2015.531.Search in Google Scholar

Khattak, M.A., Borhana, A.A., Yasin, N., Khan, R., and Saad, J. (2018). Initial criticality analysis of Malaysia TRIGA research reactor using TRIGLAV computer code. Eng. Technol. 735: 899–903, https://doi.org/10.14419/ijet.v7i4.35.26279.Search in Google Scholar

Malu, K. (1976). Security rapport, Kinshasa, Centre Regional Etudes Nucl. Kinshasa (CREN-K).Search in Google Scholar

Persic, A., Slavic, S., Ravnik, M., and Zagar, T. (2000). TRIGLAV a program package for research reactor calculations. IJS-DP-7862, Jožef Stefan Institute, Ljubljana, Slovenia.Search in Google Scholar

Poston, D.I. and Trellue, H.R. User’s manual, version 1.00 for Monteburns, version 3.01. United States: N. p., 1998. Web. https://doi.org/10.2172/307942. Los Alamos National Lab. (LANL), USA.Search in Google Scholar

Sutondo, T. (2014). Analyses of fuel burn-up calculations of kartini reactor based on the new calculation scheme, 17. Center of Accelerator’s Science and Technology (CAST), pp. 91–100.Search in Google Scholar

Wilson, W., Cowell, S., England, T., Hayes, A., and Moller, P. (2008). A manual for CINDER’90 version 07.4 codes and data. LA-UR-07-8412, Los Alamos National Laboratory, Los Alamos.Search in Google Scholar

Received: 2022-02-10
Published Online: 2022-08-29
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.12.2022 from https://www.degruyter.com/document/doi/10.1515/kern-2022-0016/html
Scroll Up Arrow