Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter Mouton September 6, 2018

Practice makes perfect: the consequences of lexical proficiency for articulation

  • Fabian Tomaschek EMAIL logo , Benjamin V. Tucker , Matteo Fasiolo and R. Harald Baayen
From the journal Linguistics Vanguard

Abstract

Many studies report shorter acoustic durations, more coarticulation and reduced articulatory targets for frequent words. This study investigates a factor ignored in discussions on the relation between frequency and phonetic detail, namely, that motor skills improve with experience. Since frequency is a measure of experience, it follows that frequent words should show increased articulatory proficiency. We used EMA to test this prediction on German inflected verbs with [a] as stem vowels. Modeling median vertical tongue positions with quantile regression, we observed significant modulation by frequency of the U-shaped trajectory characterizing the articulation of the [a:]. These modulations reflect two constraints, one favoring smooth trajectories through anticipatory coarticulation, and one favoring clear articulation by realizing lower minima. The predominant pattern across sensors, exponents, and speech rate suggests that the constraint of clarity dominates for lower-frequency words. For medium-frequency words, the smoothness constraint leads to a raising of the trajectory. For the higher-frequency words, both constraints are met simultaneously, resulting in low minima and stronger coarticulation. These consequences of motor practice for articulation challenge both the common view that a higher-frequency of use comes with more articulatory reduction, and cognitive models of speech production positing that articulation is post-lexical.

Acknowledgement

This research was funded in part by the Alexander von Humboldt professorship awarded to R. H. Baayen (Funder Id: 10.13039/100005156, grant 1141527), and in part by a collaborative grant from the Deutsche Forschungsgemeinschaft (Funder Id: 10.13039/501100001659, BA 3080/3-1). We are indebted to Ryan Callihan, Samantha Tureski, and two anonymous reviewers for their helpful comments on previous versions of this paper.

References

Arnold, D., F. Tomaschek, K. Sering, M. Ramscar & R. H. Baayen. 2017. Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PLoS One.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174623.10.1371/journal.pone.0174623Search in Google Scholar

Aylett, M. & A. Turk. 2004. The smooth signal redundancy hypothesis: A functional explanation for relationships between redundancy, prosodic prominence, and duration in spontaneous speech. Language and Speech 47(1). 31–56.10.1177/00238309040470010201Search in Google Scholar

Aylett, M. & A. Turk. 2006. Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. Journal of the Acoustical Society of America 119(5). 3048–3058.10.1121/1.2188331Search in Google Scholar

Baayen, R. H., S. Vasishth, D. Bates & R. Kliegl. 2017a. The cave of shadows. Addressing the human factor with generalized additive mixed models. Journal of Memory and Language 94. 206–234.10.1016/j.jml.2016.11.006Search in Google Scholar

Baayen, R. H., F. Tomaschek, S. Gahl & M. Ramscar. 2017b. The Ecclesiastes principle in language change. In M. Hundt, S. Mollin & S. Pfenninger (eds.), The changing English language: Psycholinguistic perspectives, 21–48. Cambridge, UK: Cambridge University Press.10.1017/9781316091746.002Search in Google Scholar

Barbier, G., P. Perrier, L. Menard, Y. Payan, M. Tiede & J. Perkell. 2015. Speech planning in 4-year-old children versus adults: Acoustic and articulatory analyses. 16th Annual Conference of the International Speech Communication Association (Interspeech 2015).https://hal.archives-ouvertes.fr/hal-01200984 (accessed 1 February 2018).10.21437/Interspeech.2015-158Search in Google Scholar

Bell, A., J. M. Brenier, M. Gregory, C. Girand & D. Jurafsky. 2009. Predictability effects on durations of content and function words in conversational English. Journal of Memory and Language 60(1). 92–111.10.1016/j.jml.2008.06.003Search in Google Scholar

Bertucco, M. & P. Cesari. 2010. Does movement planning follow Fitts’ law? Scaling anticipatory postural adjustments with movement speed and accuracy. Neuroscience 171(1). 205–213.10.1016/j.neuroscience.2010.08.023Search in Google Scholar

Blevins, J. P., P. Milin & M. Ramscar. 2015. The Zipfian paradigm cell filling problem. In F. Kiefer, J. P. Blevins & H. Bartos (eds.), Morphological paradigms and functions, 141–158. Leiden: Brill.Search in Google Scholar

Boersma, P. & P. Weenink. 2015. Praat: Doing phonetics by computer [computer program], version 5.3.41, retrieved from http://www.praat.org/.Search in Google Scholar

Browman, C. & L. Goldstein. 1986. Towards an articulatory phonology. Phonology 3. 219–252.10.1017/S0952675700000658Search in Google Scholar

Browman, C. & L. Goldstein. 1989. Articulatory gestures as phonological units. Phonology 6. 201–251.10.1017/S0952675700001019Search in Google Scholar

Clopper, C. G., R. Turnbull & R. S. Burdin. 2018. Assessing predictability effets in connected read speech. Linguistics Vanguard 4(S2).10.1515/lingvan-2017-0044Search in Google Scholar

Cohen Priva, U. 2015. Informativity affects consonant duration and deletion rates. Laboratory Phonology 6(2). 243–278.10.1515/lp-2015-0008Search in Google Scholar

Cohen Priva, U. & F. Jaeger. 2018. The interdependence of frequency, predictability, and informativity. Linguistics Vanguard 4(S2).10.1515/lingvan-2017-0028Search in Google Scholar

Daland, R. & K. Zuraw. 2018. Loci and locality of informational effects on phonetic implementation. Linguistics Vanguard 4(S2).10.1515/lingvan-2017-0045Search in Google Scholar

Dell, G. S. 1986. A spreading-activation theory of retrieval in sentence production. Psychological Review 93(3). 283–321.10.1037/0033-295X.93.3.283Search in Google Scholar

Ernestus, M., R. H. Baayen & R. Schreuder. 2002. The recognition of reduced word forms. Brain and Language 81(1–3). 162–173.10.1006/brln.2001.2514Search in Google Scholar

Faaß, G. & K. Eckart. 2013. Sdewac – a corpus of parsable sentences from the web. In I. Gurevych, C. Biemann & T. Zesch (eds.), Language processing and knowledge in the web (Lecture Notes in Computer Science), 61–68. Berlin/Heidelberg: Springer.10.1007/978-3-642-40722-2_6Search in Google Scholar

Fasiolo, M., Y. Goude, R. Nedellec & S. N. Wood. 2017. Fast calibrated additive quantile regression. Manuscript, University of Bristol. https://github.com/mfasiolo/qgam.Search in Google Scholar

Fitts, Paul M. 1954. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6). 381.10.1037/h0055392Search in Google Scholar

Foulkes, P., G. Docherty, S. Shattuck-Hufnagel & V. Hughes. 2018. Consideration of methodological robustness, indexical and prosodic factors, and replication in the laboratory. Linguistics Vanguard 4(S2).10.1515/lingvan-2017-0032Search in Google Scholar

Gahl, S. 2008. “Thyme” and “time” are not homophones. Word durations in spontaneous speech. Language 84(3). 474–496.10.1353/lan.0.0035Search in Google Scholar

Gahl, S. & R. H. Baayen. under revision. Twenty-eight years of vowels.Search in Google Scholar

Gahl, S., Y. Yao & K. Johnson. 2012. Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. Journal of Memory and Language 66. 789–806.10.1016/j.jml.2011.11.006Search in Google Scholar

Georgopoulos, A., J. Kalaska & J. Massey. 1981. Spatial trajectories and reaction times of aimed movements: Effects of practice, uncerntainty, and change in target location. Journal of Neurophysiology 46(4). 725–743.10.1152/jn.1981.46.4.725Search in Google Scholar

Goffman, L., A. Smith, L. Heisler & M. Ho. 2008. The breadth of coarticulatory units in children and adults. Journal of Speech, Language, and Hearing Research 51(6). 1424–1437.10.1044/1092-4388(2008/07-0020)Search in Google Scholar

Goldstein, L., H. Nam, E. Saltzman & I. Chitoran. 2009. Coupled oscillator planning model of speech timing and syllable structure. In G. Fant, H. Fujisaki & J. Shen (eds.), Frontiers in phonetics and speech science, 239–250. Beijing: The Commercial Press.Search in Google Scholar

Hall, K. C., E. Hume, F. Jaeger & A. Wedel. 2018. The role of predictability in shaping phonological patterns. Linguistics Vanguard 4(S2).10.1515/lingvan-2017-0027Search in Google Scholar

Hastie, T. J. & R. J. Tibshirani. 1990. Generalized additive models. London: Chapman & Hall.Search in Google Scholar

Hawkins, S. 2003. Roles and representations of systematic fine phonetic detail in speech understanding. Journal of Phonetics 31. 373–405.10.1016/j.wocn.2003.09.006Search in Google Scholar

Hickok, G. 2014. The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience 29(1). 2–20.10.1080/01690965.2013.834370Search in Google Scholar

Johnson, K. 2004. Massive reduction in conversational American English. In K. Yoneyama & K. Maekawa (eds.), Spontaneous speech: Data and analysis. Proceedings of the 1st session of the 10th international symposium, 29–54. Tokyo, Japan: The National International Institute for Japanese Language.Search in Google Scholar

Junqua, J. C. 1993. The lombard reflex and its role on human listeners and automatic speech recognizers. The Journal of the Acoustical Society of America 93(1). 510–524.10.1121/1.405631Search in Google Scholar

Katz, W. F. & S. Bharadway. 2001. Coarticulation in fricative-vowel syllables produced by children and adults: A preliminary report. Clinical Linguistics and Phonetics 15(1). 139–143.10.3109/02699200109167646Search in Google Scholar

Kemps, R. J., M. Ernestus, R. Schreuder & R. H. Baayen. 2005a. Prosodic cues for morphological complexity: The case of Dutch plural nouns. Memory & Cognition 33(3). 430–446.10.3758/BF03193061Search in Google Scholar

Kemps, R. J., Lee H. Wurm, M. Ernestus, R. Schreuder & R. H. Baayen. 2005b. Prosodic cues for morphological complexity in Dutch and English. Language and Cognitive Processes 20(1/2). 43–73.10.1080/01690960444000223Search in Google Scholar

Keuleers, E., M. Stevens, P. Mandera & M. Brysbaert. 2015. Word knowledge in the crowd: Measuring vocabulary size and word prevalence in a massive online experiment. The Quarterly Journal of Experimental Psychology 8. 1665–1692.10.1080/17470218.2015.1022560Search in Google Scholar

Koenker, R. 2005. Quantile regression. Cambridge: Cambridge University Press.10.1017/CBO9780511754098Search in Google Scholar

Langolf, G. D., D. B. Chaffin & J. A. Foulke. 1976. An investigation of Fitts’ law using a wide range of movement amplitudes. Journal of Motor Behavior 8(2). 113–128.10.1080/00222895.1976.10735061Search in Google Scholar

Lebedev, S., W. H. Tsui & P. Van Gelder. 2001. Drawing movements as an outcome of the principle of least action. Journal of Mathematical Psychology 45. 43–52.10.1006/jmps.1999.1287Search in Google Scholar

Levelt, W. J., A. Roelofs & A. S. Meyer. 1999. A theory of lexical access in speech production. The Behavioral and Brain Sciences 22(1). 1–75.10.3115/992628.992631Search in Google Scholar

Liberman, A. M. & I. G. Mattingly. 1985. The motor theory of speech perception revised. Cognition 21. 1–36.10.1016/0010-0277(85)90021-6Search in Google Scholar

Lindblom, B. 1990. Explaining phonetic variation: A sketch of the H&H theory. English. In W. J. Hardcastle & A. Marchal (eds.), Speech production and speech modelling, vol. 55, 403–439. Dordrecht: Kluwer.10.1007/978-94-009-2037-8_16Search in Google Scholar

Magen, H. S. 1997. The extent of vowel-to-vowel coarticulation in English. Journal of Phonetics 25. 187–205.10.1006/jpho.1996.0041Search in Google Scholar

Meunier, C. & R. Espesser. 2011. Vowel reduction in conversational speech in French: The role of lexical factors. Journal of Phonetics 39(3). 271–278.10.1016/j.wocn.2010.11.008Search in Google Scholar

Moon, S.-J. & B. Lindblom. 1989. Formant undershoot in clear and citation- form speech: A second progress report. Stockholm: Royal Institute of Technology, Department of Speech Communication.Search in Google Scholar

Noiray, A., L. Menard & K. Iskarous. 2013. The development of motor synergiers in children: Ultrasound and acoustic measurements. Journal of the Acoustical Society of America 133(1). 444–452.10.1121/1.4763983Search in Google Scholar

Öhman, S. E. G. 1966. Coarticulation in vcv utterances: Spectrographic measurements. Journal of the Acoustical Society of America 39(151). 151–168.10.1121/1.1909864Search in Google Scholar

Platz, T., R. G. Brown & C. D. Marsden. 1998. Training improves the speed of aimed movements in parkinson’s disease. Brain 121. 505–513.10.1093/brain/121.3.505Search in Google Scholar

Pouplier, M., S. Marin, P. Hoole & A. Kochetov. 2017. Speech rate effects in Russian onset clusters are modulated by frequency, but not auditory cue robustness. Journal of Phonetics 64. 108–126.10.1016/j.wocn.2017.01.006Search in Google Scholar

R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org.Search in Google Scholar

Raeder, C., J. Fernandez-Fernandez & A. Ferrauti. 2015. Effects of six weeks of medicine ball training on throwing velocity, throwing precision, and isokinetic strength of shoulder rotators in female handball players. Journal of Strength and Conditioning Research 29(7). 1904–1014.10.1519/JSC.0000000000000847Search in Google Scholar

Ramscar, M., P. Hendrix, C. Shaoul, P. Milin & R. H. Baayen. 2014. The myth of cognitive decline: Non-linear dynamics of lifelong learning. Topics in Cognitive Science 6(1). 5–42.10.1111/tops.12078Search in Google Scholar

Ramscar, M., C. C. Sun, P. Hendrix & R. H. Baayen. 2017. The mismeasurement of mind: Life-span changes in paired-associate-learning scores reflect the “cost” of learning, not cognitive decline. Psychological Science 28(8). 1171–1179. https://doi.org/10.1177/0956797617706393.10.1177/0956797617706393Search in Google Scholar

Rapp, S. 1995. Automatic phonemic transcription and linguistic annotation from known text with Hidden Markov Models – an aligner for German. Proceedings of ELSNET goes east and IMACS Workshop “Integration of Language and Speech.”Search in Google Scholar

Schmidtke, D., K. Matsuki & V. Kuperman. 2017. Surviving blind decomposition: A distributional analysis of the time course of complex word recognition. Journal of Experimental Psychology: Learning, Memory and Cognition 43(11). 1793–1820.10.1037/xlm0000411Search in Google Scholar

Schulz, E., Y. M. Oh, Z. Malisz, B. Andreeva & B. Mobius. 2016. Impact of prosodic structure and information density on vowel space size. Proceedings of Speech Prosody 2016 (Boston). 350–354.10.21437/SpeechProsody.2016-72Search in Google Scholar

Shaoul, C. & F. Tomaschek. 2013. A phonological database based on celex and n-gram frequencies from the sdewac corpus. https://fabiantomaschek.files.wordpress.com/2016/07/tomaschek_corpus_readme.pdf (accessed 1 February 2018).Search in Google Scholar

Sosnik, R., B. Hauptmann, A. Karni & T. Flash. 2004. When practice leads to co-articulation: The evolution of geometrically defined movement primitives. Experimental Brain Research 156. 422–438.10.1007/s00221-003-1799-4Search in Google Scholar

Sussman, H. M., C. Duder, E. Dalston & A. Cacciatore. 1999. An acoustic analysis of the development of cv coarticulation – a case study. Journal of Speech, Language, and Hearing Research 42(5). 1080–1096. https://doi.org/10.1044/jslhr.4205.1080. +http://dx.doi.org/10.1044/jslhr.4205.1080.10.1044/jslhr.4205.1080Search in Google Scholar

Tiede, M., C. Mooshammer, L. Goldstein, S. Shattuck-Hufnagel & J. Perkell. 2011. Motor learning of articulator trajectories in the production of novel utterances. Proceedings of the ICPHS XVII. 1986–1989.Search in Google Scholar

Tomaschek, F., B. V. Tucker, M. Wieling & R. H. Baayen. 2014. Vowel articulation affected by word frequency. Proceedings of the 10th ISSP, Cologne. 425–428.Search in Google Scholar

Tomaschek, F., D. Arnold, Franziska Broker & R. H. R. Baayen. 2018. Lexical frequency co-determines the speed-curvature relation in articulation. Journal of Phonetics. 68. 103–116.10.1016/j.wocn.2018.02.003Search in Google Scholar

Tomaschek, F., I. Plag, M. Ernestus & R. H. Baayen. under revision(a). How morphological structure affects phonetic encoding: Modeling the duration of morphemic and nonmorphemic s using naive discriminative learning.Search in Google Scholar

Tomaschek, F., D. Arnold, J. van Rij, B. V. Tucker & K. Sering. under revision(b). Proficiency effects on the movement precision during the execution of articulatory gestures.Search in Google Scholar

Turnbull, R. 2018. Patterns of probabilistic segment deletion/reduction in English and Japanese. Linguistics Vanguard 4(S2).10.1515/lingvan-2017-0033Search in Google Scholar

van Bergem, D. R. 1995. Perceptual and acoustic aspects of lexical vowel reduction, a sound change in progress. Speech Communication 16(4). 329–358.10.1016/0167-6393(95)00003-7Search in Google Scholar

van Rij, J., M. Wieling, R. H. Baayen & H. van Rijn. 2015. itsadug: Interpreting Time Series, Autocorrelated Data Using GAMMs. R package version 0.8.Search in Google Scholar

Wieling, M., F. Tomaschek, D. Arnold, M. Tiede, F. Broker, S. Thiele, S. N. Wood & R. H. Baayen. 2016. Investigating dialectal differences using articulography. Journal of Phonetics 59. 122–143.10.1016/j.wocn.2016.09.004Search in Google Scholar

Wood, S. N. 2006. Generalized additive models: An introduction with r. Boca Raton, Florida, USA: Chapman & Hall/CRC.10.1201/9781420010404Search in Google Scholar

Wood, S. N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73. 3–36.10.1111/j.1467-9868.2010.00749.xSearch in Google Scholar

Wood, S. N. 2013a. A simple test for random effects in regression models. Biometrika 100. 1005–1010.10.1093/biomet/ast038Search in Google Scholar

Wood, S. N. 2013b. On p-values for smooth components of an extended generalized additive model. Biometrika 100. 221–228.10.1093/biomet/ass048Search in Google Scholar

Zharkova, N., N. Hewlett & W. J. Hardcastle. 2011. Coarticulation as an indicator of speech motor control development in children: An ultrasound study. Motor Control 15(1). 118–140.10.1123/mcj.15.1.118Search in Google Scholar

Zharkova, N., N. Hewlett & W. J. Hardcastle. 2012. An ultrasound study of lingual coarticulation in/sv/syllables produced by adults and typically developing children. Journal of the International Phonetic Association 42(2). 193–208.10.1017/S0025100312000060Search in Google Scholar

Zipf, G. K. 1949. Human behavior and the principle of least effort. Cambridge: Addison-Wesley Press.Search in Google Scholar

Received: 2017-04-27
Accepted: 2018-06-26
Published Online: 2018-09-06

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.6.2023 from https://www.degruyter.com/document/doi/10.1515/lingvan-2017-0018/html
Scroll to top button