Accessible Requires Authentication Published by De Gruyter Mouton June 22, 2019

Implicit Causality in younger and older adults

Dagmar Bittner
From the journal Linguistics Vanguard

Abstract

The study asked whether there are age-related differences in the Implicit Causality values (IC-values) of transitive verbs in younger and older adults. The results are expected to support either linguistic accounts or world-knowledge accounts of the origin of Implicit Causality. Using the traditional sentence-completion task (John VERBs Mary, because …) 124 verbs were investigated in a group of students around age 23 and in a group of older people around age 81. Compared to the students, the older people produced higher proportions of Object-reference with verbs showing Subject-reference in general and higher Subject-reference with verbs showing Object-reference in general. Verb-class analysis in terms of semantic role patterns showed that the IC-values of SE-verbs and ES-verbs were less different in the two groups than those of SE-AP-verbs, AP-verbs, and APpres-verbs. The differences in the two latter classes are significant. The relatively broad similarity in the IC-values of the two age groups supports linguistic accounts of the origin of IC-values. The observed differences, however, point to variation in the perspective on interpersonal events in younger and older adults. It is hypothesized that the latter observation reflects an impact of world knowledge on IC-values in that the social life situations of younger and older adults shape expectations regarding who is causing an interpersonal event somewhat differently in the two age groups.

Funding source: German Federal Ministry of Education and Research (BMBF)

Award Identifier / Grant number: 01UG1411

Funding statement: Thanks are due to many students who helped in collecting the data, to Jeruen Dery for joint work on IC over the course of several years, Torgrim Solstad for discussions, Luke Tudge for statistical analysis, two anonymous reviewers for fruitful comments, and, last but not least, to the two editors of this volume for their helpful suggestions and patience. Financial support for the presented research was given by the German Federal Ministry of Education and Research (BMBF), Grant 01UG1411.

References

Au, Terry K. 1986. A verb is worth a thousand words: The causes and consequences of interpersonal events implicit in language. Journal of Memory and Language 25(1). 104–122. Search in Google Scholar

Bates, Douglas, Martin Maechler, Benjamin M. Bolker & Steven C. Wolker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1). 1–48. Search in Google Scholar

Bittner, Dagmar. 2017. Effects of type of because-clause on German 5- and 6-year-olds comprehension of Implicit Causality. Paper presented at the International Symposium on Mono- and Bilingual Speech Development (ISMBS 2017), Chania (Greece), 4.-7.9. Search in Google Scholar

Bott, Oliver & Torgrim Solstad. 2014. From verbs to discourse: A novel account of implicit causality. In Barbara Hemforth, Barbara Mertins & Cathrine Fabricius-Hansen (eds.), Psycholinguistic Approaches to Meaning and Understanding across Languages, 219–251. Cham: Springer. Search in Google Scholar

Brown, Nicolas A. & John F. Rauthmann. 2016. Situation characteristics are age graded. Mean-level patterns of the situational eight DIAMONDS across the life span. Social Psychology and Personality Science 7(7). 667–679. Search in Google Scholar

Brown, Roger & Deborah Fish. 1983. The psychological causality implicit in language. Cognition 14(3). 237–273. Search in Google Scholar

Cohen, Leslie B. & Geoffrey Amsel. 1998. Precursors to infants’ perception of the causality of a simple event. Infant Behavior and Development 21(4). 713–732. Search in Google Scholar

Dery, Jeruen & Dagmar Bittner. 2016. Time and causation in discourse: Temporal proximity, implicit causality, and re-mention biases. Journal of Psycholinguistic Research 45(4). 883–899. Search in Google Scholar

Garvey, Catherine & Alfonso Caramazza. 1974. Implicit causality in verbs. Linguistic Inquiry 5(3). 459–464. Search in Google Scholar

Hartshorne, Joshua K. 2014. What is implicit causality? Language, Cognition and Neuroscience 29(7). 804–824. Search in Google Scholar

Hartshorne, Joshua K. & Jesse Snedeker. 2013. Verb argument structure predicts Implicit Causality: The advantages of finer-grained semantics. Language and Cognitive Processes 28(10). 1474–1508. Search in Google Scholar

Hartshorne, Joshua K., Yasutada Sudo, & Miki Uruwashi. 2013. Are implicit causality pronoun resolution biases consistent across languages and cultures? Experimental Psychology 60(3). 179–196. Search in Google Scholar

Hartshorne, Joshua K., Amanda Pogue & Jesse Snedeker. 2015. Love is hard to understand: the relationship between transitivity and caused events in the acquisition of emotion verbs. Journal of Child Language 42(3). 467–504. Search in Google Scholar

Kehler, Andrew, Laura Kertz, Hannah Rohde, & Jeffrey L. Elman. 2008. Coherence and coreference revisited. Journal of Semantics 25(1). 1–44. Search in Google Scholar

Kipper-Schuler, Karin. 2006. VerbNet: A broad-coverage, comprehensive verb lexicon. Pennsylvania: University of Pennsylvania dissertation. Search in Google Scholar

Koornneef, Arnout W., & Jos J. A. van Berkum. 2006. On the use of verb-based implicit causality in sentence comprehension: Evidence from self-paced reading and eye tracking. Journal of Memory and Language 54(4). 445–465. Search in Google Scholar

MacWhinney, Brian. 2000. The CHILDES Project. Tools for Analyzing Talk, 3 rd ed. Mahwah, NJ: Lawrence Erlbaum Associates. Search in Google Scholar

Mandler, Jean M. 1984. Stories, scripts, and scenes: Aspects of schema theory. Hillsdale, NJ: Lawrence Erlbaum Associates. Search in Google Scholar

Mandler, Jean M. 1988. How to build a baby: On the development of an accessible representational system. Cognitive Development 3(2). 113–136. Search in Google Scholar

Pickering, Martin J. & Asifa Majid. 2007. What are implicit causality and implicit consequentiality? Language and Cognitive Processes 22(5). 780–788. Search in Google Scholar

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/. Search in Google Scholar

Rudolph, Udo & Friedrich Forsterling. 1997. The psychological causality implicit in verbs: A review. Psychological Bulletin 121(2). 192–218. Search in Google Scholar

Rumelhart, David E. 1980. Schemata: The building blocks of cognition. In Rand J. Spiro, Bertram C Bruce & William F. Brewer (eds), Theoretical Issues in Reading Comprehension, 33–58. Hillsdale, NJ: Lawrence Erlbaum. Search in Google Scholar

Solstad, Torgrim. 2010. Some new observations on ‘because (of)’. In Maria Aloni, Harald Bastiaanse, Tikitu de Jager & Katrin Schulz (eds.), Logic, Language and Meaning: 17th Amsterdam Colloquium, 436–445. Berlin: Springer. Search in Google Scholar

Appendix

Note that the IC-values in columns 3 and 4 are given in % of S-reference.

Verb in German Semantic role pattern Students: IC-value (%) Older adults: IC-value (%) Signif. p-values Verb in English
antworten AP 0.077 0.321 0.0045 answer
ärgern SE 0.478 0.296 annoy
beachten SE-AP 0.159 0.172 consider
begrüssen AP 0.471 0.5 greet
beissen AP 0.625 0.538 bite
beleidigen SE-AP 0.5 0.615 affront
belohnen APpres 0.059 0.179 reward
belügen AP 0.833 0.633 0.038 telling. a lie
beneiden ES 0.029 0.107 envy
beruhigen SE-AP 0.129 0.130 calm
berühren SE-AP 0.828 0.75 touch
beschimpfen APpres 0.211 0.233 opprobriate
beschützen AP 0.304 0.241 guard
besiegen AP 0.775 0.724 defeat
bestrafen APpres 0.045 0.12 punish
besuchen AP 0.327 0.44 visit
bewegen AP 0.4 0.345 move
bewundern ES 0.026 0.038 admire
brauchen AP 0.6 0.72 need
danken APpres 0.043 0.1 thank
drehen AP 0.204 0.455 0.046 spin
drücken AP 0.731 0.793 hug
entdecken ES 0.288 0.154 discover
enttäuschen SE 0.927 0.92 disappoint
erkennen AP 0.379 0.357 recognize
ermorden AP 0.377 0.44 murder
erobern AP 0.882 0.407 5,37E + 08 take/win
erschlagen AP 0.456 0.379 slay
erschrecken SE-AP 0.692 0.821 scare
erstaunen SE 0.814 1 0.034 astonish
erwischen AP 0.433 0.130 0.011 get hold on
fangen AP 0.271 0.36 catch
finden AP 0.431 0.519 locate
fürchten ES 0.015 0.125 (0.053) be afraid
füttern AP 0.03 0.038 feed
gefallen SE 0.5 0.607 appeal
gratulieren APpres 0.014 0.074 congratulate
grüssen AP 0.778 0.81 greet
halten AP 0.206 0.148 hold
hassen ES 0.027 0.034 hate
hauen AP 0.213 0.179 beat
heiraten AP 0.810 0.667 marry
helfen AP 0.258 0.207 assist
herzen Ap 0.8 0.677 fondle
hetzen AP 0.54 0.556 rush
holen AP 0.405 0.474 fetch
hören ES 0.059 0.16 hear
kämmen AP 0.171 0.065 comb
kitzeln Ap 0.607 0.458 tickle
kleiden AP 0.235 0.276 clothe
kneifen AP 0.357 0.419 pinch
kränken SE-AP 0.783 0.6 offend
küssen AP 0.788 0.862 kiss
langweilen SE 0.855 0.815 bored
lieben ES 0.114 0.153 love
loben APpres 0 0.111 0.023 compliment
malen AP 0.6 0.286 0.011 draw
mögen ES 0 0.25 8,56E + 09 like
necken SE-AP 0.828 0.5 0.003 tease
nerven SE-AP 0.830 0.821 get on nervs
packen AP 0.348 0.172 grab
pflegen AP 0.11 0 care for
pieken AP 0.552 0.483 sting
prüfen AP 0.548 0.304 (0.054) vet
putzen AP 0.149 0.208 clean
quälen SE-AP 0.544 0.581 torment
riechen ES 0.06 0.107 smell
rufen AP 0.843 0.6 (0.054) call
schätzen ES 0 0 appreciate
schaukeln AP 0.155 0.214 dandle
schieben AP 0.221 0.25 push
schubsen AP 0.479 0.467 slap
schütteln AP 0.246 0.286 shake
schützen AP 0.468 0.222 0.035 guard
sehen AP 0.35 0.25 see
stören SE-AP 0.819 0.71 disturb
stoßen AP 0.455 0.231 (0.059) hustle/prod
suchen AP 0.517 0.517 look for
täuschen AP 0.859 0.692 deceive
testen AP 0.629 0.607 test
töten AP 0.435 0.538 kill
tragen AP 0.098 0.074 carry
trösten APpres 0.119 0.16 comfort
überfahren AP 0.721 0.654 run over
überraschen SE-AP 0.324 0.296 surprise
übersehen SE-AP 0.164 0.4 0.025 overlook
überzeugen SE-AP 0.853 0.577 0.0107 convince
unterbrechen AP 0.438 0.303 interrupt
verachten ES 0.075 0.069 despise
verbessern AP 0.227 0.28 correct
verehren ES 0.145 0.276 adore
verfluchen AP-AP 0.043 0.062 curse
verhauen SE-AP 0.36 0.154 pund
verjagen AP 0.353 0.31 chase. away
verletzen SE-AP 0.806 0.793 hurt
verlieren AP 0.623 0.571 lose
verraten AP 0.4 0.44 betray
verspotten AP 0.188 0.346 deride
verwandeln AP 0.731 0.444 0.043 transform
verwunden AP 0.719 0.679 wound
verzaubern SE-AP 0.833 0.742 enchant
wärmen AP 0.031 0.069 warm
waschen AP 0.058 0.04 wash
wecken AP 0.085 0.04 wake so. up
ziehen AP 0.238 0.13 pull/drag
zwicken AP 0.603 0.643 pinch
Received: 2018-05-15
Accepted: 2018-12-13
Published Online: 2019-06-22

©2019 Walter de Gruyter GmbH, Berlin/Boston