Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter October 30, 2020

Post-fire phyllostomid assemblages in forest patches of the Pantanal wetland

Carolina F. Santos ORCID logo, Reinaldo C. Teixeira, Josué Raizer and Erich Fischer ORCID logo
From the journal Mammalia


We report on phyllostomid assemblages just after a wildfire and again three months later across burned and unburned forest patches. We recorded 10 species throughout the fire disturbance gradient, mainly determined by changes in the understory. Burned patches presented high abundance of predator bats right after fire, including gleaning insectivorous, carnivorous, and sanguivorous. Three months later, burned forests were empty of predators and dominated by large frugivores that occurred throughout the whole gradient in both periods. The fire appears to create ephemeral opportunity to predator phyllostomids right after its passage, but subsequent vegetation recovery seems to reduce diversity in burned forests.

Corresponding author: Carolina F. Santos,Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, 79070-900Campo Grande, Mato Grosso do Sul, Brazil, E-mail:

Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Award Identifier / Grant number: 3035/2011

Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico

Award Identifier / Grant number: 06345/2019-6


The study was done under IBAMA license (1865036).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors thank EMBRAPA for support, CAPES for a grant to CFS (3035/2011), and CNPq for a grant to EF (06345/2019–6).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Armitage, D.W. and Ober, H.K. (2012). The effects of prescribed fire on bat communities on longleaf pine sandhills ecosystem. J. Mammal. 93: 102–114, .Search in Google Scholar

Boyles, J.G. and Aubrey, D.P. (2006). Managing forest with prescribed fire: implications for a cavity dwelling bat species. For. Ecol. Manag. 222: 108–115, .Search in Google Scholar

Buchalski, M.R., Fontaine, J.B., Heady, P.A.III, Hayes, J.P., and Frick, W.F. (2013). Bat response to differing fire severity in mixed-conifer forest California, USA. PloS One 8: e57884, .Search in Google Scholar

Camargo, A.C.L., Barrio, R.O.L., Camargo, N.F., Mendonça, A.F., Ribeiro, J.F., Rodrigues, C.M.F., and Vieira, E.M. (2018). Fire affects the occurrence of small mammals at distinct spatial scales in a Neotropical savanna. Eur. J. Wildl. Res. 64: 63, .Search in Google Scholar

Fischer, E., Santos, C.F., Carvalho, L.F.A.C., Camargo, G., Cunha, N.L., Silveira, M., Bordignon, M.O., and Silva, C.L. (2015). Bat fauna of Mato Grosso do Sul, southwestern Brazil. Biota Neotropica 15: 1–7, .Search in Google Scholar

Fischer, E., Silveira, M., Munin, R.L., Camargo, G., Santos, C.F., Ramos Pereira, M.J., Fischer, W., and Eriksson, A. (2018). Bats in the dry and wet Pantanal. Hystrix it. J. Mammal. 29: 11–17, .Search in Google Scholar

Giannini, N.P. and Kalko, E.K.V. (2004). Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos 105: 209–220, .Search in Google Scholar

Hammer, Ø., Harper, D.A.T., and Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4: 9.Search in Google Scholar

Kinlaw, A.L. (1999). A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41: 127–145, .Search in Google Scholar

Lacki, M.J., Cox, D.R., Dodd, L.E., and Dickinson, M.B. (2009). Response of Northern bats (Myotis septentrionalis) to prescribed fires in eastern Kentucky forest. J. Mammal. 90: 1165–1175, .Search in Google Scholar

Loeb, S.C. and Waldrop, T.A. (2008). Bat activity to fire and fire surrogate treatments in southern pine stands. For. Ecol. Manag. 225: 3185–3192. .Search in Google Scholar

Marciente, R., Bobrowiec, P.E.D., and Magnusson, W.E. (2015). Ground-vegetation clutter affects phyllostomid bat assemblage structure in lowland Amazonian forest. PloS One 10: e0129560, .Search in Google Scholar

Munin, R.L., Costa, P.C., and Fischer, E. (2011). Differential ingestion of fig seeds by a Neotropical bat, Platyrrhinus lineatus. Mamm. Biol. 76: 772–774, .Search in Google Scholar

Munin, R.L., Fischer, E., and Gonçalves, F. (2012). Food habits and dietary overlap in a phyllostomid bat assemblage in the Pantanal of Brazil. Acta Chiropterol. 14: 195–204, .Search in Google Scholar

Oliveira, H.F.M. and Aguiar, L.M.S. (2015). The response of bats (Mammalia: Chiroptera) to an incidental fire on a gallery forest at a Neotropical savanna. Biota Neotropica 15: e0091, .Search in Google Scholar

Penatti, N.C., Almeida, T.I.R., Ferreira, L.G., Arantes, A.E., and Coe, M.T. (2015). Satellite-based hydrological dynamics of the world’s largest continuous wetland. Remote Sens. Environ. 170: 1–13, .Search in Google Scholar

Pott, A., Oliveira, A.K.M., Damasceno-Junior, G.A., and Silva, J.S.V. (2011). Plant diversity of the Pantanal wetland. Braz. J. Biol. 71: 265–273, .Search in Google Scholar

Silveira, M., Tomas, W.M., Fischer, E., and Bordignon, M.O. (2018). Habitat occupancy by Artibeus planirostris bats in the Pantanal wetland, Brazil. Mamm. Biol. 91: 1–6, .Search in Google Scholar

Silveira, M., Tomas, W.M., Martins, C.A., and Fischer, E. (2020). Vegetal resources drive phylogenetic structure of phyllostomid bat assemblages in a Neotropical wetland. J. Mammal. 101: 52–60, .Search in Google Scholar

Souza, A.H.A., Batalha, M.A., Casagrande, J.C., Rivaben, R.C., Assunção, V.A., Pott, A., and Damasceno-Junior, G.A. (2019). Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. J. Veg. Sci. 30: 521–532.Search in Google Scholar

Teixeira, R.C., Corrêa, C.E., and Fischer, E. (2009). Frugivory by Artibeus jamaicensis (Phyllostomidae) bats in the Pantanal, Brazil. Stud. Neotrop. Fauna Environ. 44: 7–15, .Search in Google Scholar

Zortéa, M., Silva, D.A., and Calaça, A.M. (2018). Susceptibility of targets to the vampire bat Desmodus rotundus are proportional to their abundance in Atlantic Forest fragments? Iheringia Ser. Zool. 108: e2018037, .Search in Google Scholar

Received: 2020-04-14
Accepted: 2020-09-29
Published Online: 2020-10-30
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston