Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2021

A new species of Cynomops (Chiroptera: Molossidae) from the northwestern slope of the Andes

Daniela Arenas-Viveros ORCID logo, Pamela Sánchez-Vendizú, Alan Giraldo ORCID logo and Jorge Salazar-Bravo ORCID logo
From the journal Mammalia

Abstract

The systematics and taxonomy of the broadly distributed bats of the genus Cynomops has changed considerably in the last few years. Among the major changes, Cynomops abrasus was split into two species of large-bodied forms (Cynomops mastivus and C. abrasus) distributed east of the Andes. However, large Colombian specimens identified as C. abrasus from the western side of the Andes had yet to be included in any revisionary work. Phylogenetic analysis performed in this study, using mtDNA sequences (Cytochrome-b), revealed that these Colombian individuals are more closely related to Cynomops greenhalli. Morphological and molecular data allowed us to recognize populations from western Colombia, western Ecuador and northwestern Peru, as members of a new species of Cynomops. Characters that allow for its differentiation from C. greenhalli include a larger forearm, paler but more uniform ventral pelage, more globular braincase, and well-developed zygomatic processes of the maxilla (almost reaching the postorbital constriction). This study serves as another example of the importance of including multiple lines of evidence in the recognition of a new species. Given its rarity and the advanced transformation of its habitat, this new species is particularly important from a conservation perspective.


Corresponding author: Daniela Arenas-Viveros, Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX79401, USA, E-mail:

Acknowledgements

The authors would like to give special thanks to Dr. Juan Pablo Carrera and Mr. Fernando Salazar Miralles, who took the time to measure the specimens deposited in Ecuadorian museums. Dr. Ligiane M. Moras, Leonardo Alava, and Ana Lucia Pilatasig shared information that was crucial to complete this study. We would also like to thank all the museum collection staff that facilitated specimen’s loans and museum visits: O. E. Murillo (UV), S. F. Burneo (QCAZ), V. Pacheco (MUSM), J. Salas (MUGM), R. Bradley (TTU), B. Patterson (FMNH), N. Simmons (AMNH), M. Efler (KU), D. Lunde (USNM), J. Esselstyn (LSUMZ), and B. Lim (ROM).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adarve, J.B. and Torres, A.M. (2010). Estructura y composición florística del Parque Natural Regional El Vínculo – Buga. Cespedesia 32: 21–36.Search in Google Scholar

Alberico, M., Cadena, A., and Muñoz-Saba, Y. (2000). Mammals (Synapsida: Theria) of Colombia. Biota Colomb. 1: 43–75.Search in Google Scholar

Alberico, M., and Naranjo, H.L.G. (1982). Primer registro de Molossops brachymeles (Chiroptera: Molossidae) para Colombia. Cespedesia 11: 141–143.Search in Google Scholar

Alexander, A.M., Su, Y.-C., Oliveros, C.H., Olson, K.V., Travers, S.L., and Brown, R.M. (2017). Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow-mouth frogs. Evolution 71: 475–488, https://doi.org/10.1111/evo.13133.Search in Google Scholar

Alvarez-López, H. and Kattan, G.H. (1995). Notes on the conservation status of resident diurnal raptors of the middle Cauca Valley, Colombia. Bird. Conserv. Int. 5: 341–348, https://doi.org/10.1017/s0959270900001088.Search in Google Scholar

Bacela-Spychalska, K., Wróblewski, P., Mamos, T., Grabowski, M., Rigaud, T., Wattier, R., Rewicz, T., Konopacka, A., and Ovcharenko, M. (2018). Europe-wide reassessment of Dictyocoela (Microsporidia) infecting native and invasive amphipods (Crustacea): molecular versus ultrastructural traits. Sci. Rep-UK 8: 1–16, https://doi.org/10.1038/s41598-018-26879-3.Search in Google Scholar

Báez, S., Salgado, S., Santiana, J., Cuesta, F., Peralvo, M., Galeas, R., Josse, C., Aguirre, Z., Navarro, G., Ferreira, W., et al. (2010). Propuesta Metodológica para la Representación Cartográfica de los Ecosistemas del Ecuador Continental. Quito, Ecuador: Ministerio del Ambiente y CONDESAN, pp. 210.Search in Google Scholar

Baird, A.B., McCarthy, T.J., Trujillo, R.G., Kang, Y.Y., Esmaeiliyan, M., Valdez, J., Woodman, N., and Bickham, J.W. (2018). Molecular systematics and biodiversity of the Cryptotis mexicanus group (Eulipotyphla: Soricidae): two new species from Honduras supported. Syst. Biodivers. 16: 108–117, https://doi.org/10.1080/14772000.2017.1333539.Search in Google Scholar

Beckman, E.J., Benham, P.M., Cheviron, Z.A., and Witt, C.C. (2018). Detecting introgression despite phylogenetic uncertainty: the case of the South American siskins. Mol. Ecol. 27: 4350–4367, https://doi.org/10.1111/mec.14795.Search in Google Scholar

Brack, E.A. (1986). Las ecorregiones del Perú. Bol. Lima 44: 57–70.Search in Google Scholar

Cadenillas, R. (2010). Diversidad, ecología y análisis biogeográfico de los murciélagos del parque nacional Cerros de Amotape. Tumbes, Perú: MSc thesis. Universidad Nacional Mayor de San Marcos.Search in Google Scholar

De Queiroz, K. (2007). Species concepts and species delimitation. Syst. Biol. 56: 879–886, https://doi.org/10.1080/10635150701701083.Search in Google Scholar

Dias, C., Lima, K.d.A., Araripe, J., Aleixo, A., Vallinoto, M., Sampaio, I., Schneider, H., and Rêgo, P.S.d. (2018). Mitochondrial introgression obscures phylogenetic relationships among manakins of the genus Lepidothrix (Aves: Pipridae). Mol. Phylogenet. Evol. 126: 314–320, https://doi.org/10.1016/j.ympev.2018.04.017.Search in Google Scholar

Dyke, G.J., and Van Tuinen, M. (2004). The evolutionary radiation of modern birds (Neornithes): reconciling molecules, morphology and the fossil record. Zool. J. Linn. Soc-Lond. 141: 153–177, https://doi.org/10.1111/j.1096-3642.2004.00118.x.Search in Google Scholar

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797, https://doi.org/10.1093/nar/gkh340.Search in Google Scholar

Eger, J.L. (2008). Family Molossidae. In: Gardner, A.L. (Ed.), Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats. Chicago, IL, USA: The University of Chicago Press, pp. 399–439.Search in Google Scholar

Emmons, L. (1997). Neotropical rainforest mammals: a field guide. Chicago, IL, USA: University of Chicago Press.Search in Google Scholar

Esquerré, D., Ramírez-Álvarez, D., Pavón-Vázquez, C.J., Troncoso-Palacios, J., Garín, C.F., Keogh, J.S., and Leaché, A.D. (2019). Speciation across mountains: phylogenomics, species delimitation and taxonomy of the Liolaemus leopardinus clade (Squamata, Liolaemidae). Mol. Phylogenet. Evol. 139: 106524–106524, https://doi.org/10.1016/j.ympev.2019.106524.Search in Google Scholar

Fernández, R., Edgecombe, G.D., and Giribet, G. (2018). Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci. Rep-UK 8: 1–7, https://doi.org/10.1038/s41598-017-18562-w.Search in Google Scholar

Freeman, P.W. (1981). A multivariate study of the family Molossidae (Mammalia, Chiroptera): morphology, ecology, evolution. Fieldana Zool. 7: 1–173.Search in Google Scholar

Goodwin, G.G. (1958). Three new bats from Trinidad. Amer. Mus. Novit. 1877: 1–6.Search in Google Scholar

Grattepanche, J.-D., Santoferrara, L.F., McManus, G.B., and Katz, L.A. (2016). Unexpected biodiversity of ciliates in marine samples from below the photic zone. Mol. Ecol. 25: 3987–4000, https://doi.org/10.1111/mec.13745.Search in Google Scholar

Harrell, F.E. (2020). Package ’Hmisc’: Harrell Miscellaneous.Search in Google Scholar

Hewitt, G.M. (2004). The structure of biodiversity – insights from molecular phylogeography. Front. Zool. 1: 1–16, https://doi.org/10.1038/sj.hdy.6800365.Search in Google Scholar

Hoofer, S.R., Baker, R.J., Bradley, R.C., Larsen, P.A., and Solari, S. (2008). Phylogenetics of the fruit-eating bats (Phyllostomidae: Artibeina) inferred from mitochondrial DNA sequences. Occas. Pap. Mus. TTU. 277: 1–15.10.5962/bhl.title.156929Search in Google Scholar

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874, https://doi.org/10.1093/molbev/msw054.Search in Google Scholar

Leavitt, D.H., Marion, A.B., Hollingsworth, B.D., and Reeder, T.W. (2017). Multilocus phylogeny of alligator lizards (Elgaria, Anguidae): testing mtDNA introgression as the source of discordant molecular phylogenetic hypotheses. Mol. Phylogenet. Evol. 110: 104–121, https://doi.org/10.1016/j.ympev.2017.02.010.Search in Google Scholar

Maddison, W.P. and Maddison, D.R. (2019). Mesquite: a modular system for evolutionary analysis, http://www.mesquiteproject.org.Search in Google Scholar

Martínez-Arias, V.M. and Solari, S. (2013). Extensión del área de distribución de Sturnira koopmanhilli McCarthy et al. 2006 en Colombia. Therya 4: 617–625, https://doi.org/10.12933/therya-13-152.Search in Google Scholar

Matthews, E.F., Abrams, K.M., Cooper, S.J.B., Huey, J.A., Hillyer, M.J., Humphreys, W.F., Austin, A.D., and Guzik, M.T. (2020). Scratching the surface of subterranean biodiversity: molecular analysis reveals a diverse and previously unknown fauna of Parabathynellidae (Crustacea: Bathynellacea) from the Pilbara, Western Australia. Mol. Phylogenet. Evol. 142: 106643, https://doi.org/10.1016/j.ympev.2019.106643.Search in Google Scholar

McCarthy, T.J., Albuja Viteri, L.H., and Alberico, M.S. (2006). New species of Chocoan Sturnira (Chiroptera: Phyllostomidae: Stenodermatinae) from western Ecuador and Colombia. Ann. Carnegie Mus. 75: 97–110, https://doi.org/10.2992/0097-4463(2006)75[97:ansocs]2.0.co;2.10.2992/0097-4463(2006)75[97:ANSOCS]2.0.CO;2Search in Google Scholar

Ministerio de Educación, E. (2009). AWAPIT Gramática Pedagógica. M. d. Educación. Quito, Ecuador: Ministerio de Educación y Dirección Nacional de Educación Intercultural Bilingüe, pp. 115.Search in Google Scholar

Montoya-Bustamante, S., González-Chávez, B., Zapata-Mesa, N., and Obando-Cabrera, L. (2017). First records of Sturnira bakeri Velazco & Patterson, 2014 (Chiroptera: Phyllostomidae) from Colombia. Check List. 13: 1–7, https://doi.org/10.15560/13.2.2091.Search in Google Scholar

Moras, L.M., Tavares, V.D.C., Pepato, A.R., Santos, F.R., and Gregorin, R. (2016). Reassessment of the evolutionary relationships within the dog‐faced bats, genus Cynomops (Chiroptera: Molossidae). Zool. Scripta 45: 465–480, https://doi.org/10.1111/zsc.12169.Search in Google Scholar

Moras, L.M., Gregorin, R., Sattler, T., and Tavares, V.D.C. (2018). Uncovering the diversity of dog-faced bats of the genus Cynomops (Chiroptera: Molossidae), with the redescription of C. milleri and the description of two new species. Mamm. Biol. 89: 37–51, https://doi.org/10.1016/j.mambio.2017.12.005.Search in Google Scholar

Moratelli, R. and Wilson, D.E. (2011). A new species of Myotis Kaup, 1829 (Chiroptera, Vespertilionidae) from Ecuador. Mamm. Biol. 76: 608–614, https://doi.org/10.1016/j.mambio.2010.10.003.Search in Google Scholar

Moratelli, R. and Wilson, D.E. (2014). A new species of Myotis (Chiroptera, Vespertilionidae) from Bolivia. J. Mammal. 95: 17–25, https://doi.org/10.1644/14-mamm-149.Search in Google Scholar

Mosa, K.A., Gairola, S., Jamdade, R., El-Keblawy, A., Al Shaer, K.I., Al Harthi, E.K., Shabana, H.A., and Mahmoud, T. (2019). The promise of molecular and genomic techniques for biodiversity research and DNA barcoding of the Arabian Peninsula flora. Front. Plant Sci. 9: 1–19, https://doi.org/10.3389/fpls.2018.01929.Search in Google Scholar

Motyka, M., Masek, M., and Bocak, L. (2017). Congruence between morphology and molecular phylogeny: the reclassification of Calochromini (Coleoptera: Lycidae) and their dispersal history. Zool. J. Linn. Soc-Lond. 180: 47–65, https://doi.org/10.1111/zoj.12497.Search in Google Scholar

Nattier, R., Pellens, R., Robillard, T., Jourdan, H., Legendre, F., Caesar, M., Nel, A., and Grandcolas, P. (2017). Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence. Sci. Rep-UK 7: 1–9, https://doi.org/10.1038/s41598-017-02964-x.Search in Google Scholar

Osgood, W.H. (1914). Mammals of an expedition across northern Peru. Field Mus. Nat. Hist. zool. ser. 10: 143–185.10.5962/bhl.title.2597Search in Google Scholar

Pacheco, V., Cadenillas, R., Salas, E., Tello, C., and Zeballos, H. (2009). Diversidad y endemismo de los mamíferos del Perú. Rev. Peru. Biol. 16: 005–032.10.15381/rpb.v16i1.111Search in Google Scholar

Pacheco, V., Cadenillas, R., Velazco, S., Salas, E., and Fajardo, U. (2007). Noteworthy bat records from the Pacific Tropical rainforest region and adjacent dry forest in northwestern Peru. Acta Chiropterol. 9: 409–422, https://doi.org/10.3161/1733-5329(2007)9[409:nbrftp]2.0.co;2.10.3161/1733-5329(2007)9[409:NBRFTP]2.0.CO;2Search in Google Scholar

Padial, J.M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Front. Zool. 7: 1–14, https://doi.org/10.1186/1742-9994-7-16.Search in Google Scholar

Palandačić, A., Naseka, A., Ramler, D., and Ahnelt, H. (2017). Contrasting morphology with molecular data: an approach to revision of species complexes based on the example of European Phoxinus (Cyprinidae). BMC Evol. Biol. 17: 1–17, https://doi.org/10.1186/s12862-017-1032-x.Search in Google Scholar

Patterson, B.D., Pacheco, V., and Ashley, M.V. (1992). On the origins of the western slope region of endemism: systematics of fig-eating bats, genus Artibeus. Mem. del Mus. de Hist. Nat. 21: 189–205.Search in Google Scholar

Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102–117, https://doi.org/10.1111/j.1365-2699.2006.01594.x.Search in Google Scholar

Peters, W. (1866). Über die brasilianischen, von Spix beschriebenen Flederthiere. Monatsber. König. Preuss. Akad. Wiss. Berlin: 568–588.Search in Google Scholar

Peters, S.L., Lim, B.K., and Engstrom, M.D. (2002). Systematics of dog-faced bats (Cynomops) based on molecular and morphometric data. J. Mammal. 83: 1097–1110, https://doi.org/10.1644/1545-1542(2002)083<1097:sodfbc>2.0.co;2.10.1644/1545-1542(2002)083<1097:SODFBC>2.0.CO;2Search in Google Scholar

Posada, D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256, https://doi.org/10.1093/molbev/msn083.Search in Google Scholar

Reeder, T.W., Townsend, T.M., Mulcahy, D.G., Noonan, B.P., Wood, P.L.Jr., Sites, J.W.Jr., and Wiens, J.J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PloS One 10: e0118199, https://doi.org/10.1371/journal.pone.0118199.Search in Google Scholar

Sánchez, P. and Pacheco, V. (2016). New record of Sturnira bakeri Velazco & Patterson, 2014 (Chiroptera: Phyllostomidae) from northwestern Peru. Check List. 12: 1–7, https://doi.org/10.15560/12.5.1984.Search in Google Scholar

Sánchez-Cuervo, A.M., Aide, T.M., Clark, M.L., and Etter, A. (2012). Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PloS One 7: e43943, https://doi.org/10.1371/journal.pone.0043943.Search in Google Scholar

Schrago, C.G., and Mello, B. (2020). Employing statistical learning to derive species-level genetic diversity for mammalian species. Mamm. Rev. 50: 240–251, https://doi.org/10.1111/mam.12192.Search in Google Scholar

Shamim, M., Kumar, P., Kumar, R.R., Kumar, M., Kumar, R.R., and Singh, K.N. (2017). Assessing fungal biodiversity using molecular markers. In: Singh, B.P. and Gupta, V.K. (Eds.), Molecular markers in mycology: diagnostics and marker developments. Switzerland: Springer International Publishing, pp. 305–333.10.1007/978-3-319-34106-4_15Search in Google Scholar

Simmons, N.B. (2005). Order Chiroptera. In: Wilson, D.E., and Reeder, D.M. (Eds.), Mammal species of the world. A taxonomic and geographic reference, 3rd ed. Johns Hopkins University Press, pp. 312–529.Search in Google Scholar

Solari, S., Muñoz-Saba, Y., Rodríguez-Mahecha, J.V., Defler, T.R., Ramírez-Chaves, H.E., and Trujillo, F. (2013). Riqueza, endemismo y conservación de los mamíferos de Colombia. Mastozool. Neotrop. 20: 301–365.Search in Google Scholar

Swofford, D. (2002). PAUP* Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10.Search in Google Scholar

Temminck, C.J. (1826). Sexième Monographie. Sur le genre Molosse. – Dysopes (Illig.). In: Monographies de Mammalogie, ou description de quelques genres de Mammifères, dont les espèces ont été observées dans les différens musées de l’Europe. Paris: G. Dufour et E. d’Ocagne, pp. 205–244.Search in Google Scholar

Teta, P., Cañón, C., Patterson, B.D., and Pardiñas, U.F.J. (2017). Phylogeny of the tribe Abrotrichini (Cricetidae, Sigmodontinae): integrating morphological and molecular evidence into a new classification. Cladistics 33: 153–182, https://doi.org/10.1111/cla.12164.Search in Google Scholar

Thomas, O. (1901). On a collection of bats from Para. Ann. Mag. Nat. Hist. ser. 7 8: 189–193.10.1080/03745480109442910Search in Google Scholar

Thomas, O. (1911). Three new South American Mammals. Ann. Mag. Nat. Hist. ser. 8 7: 113–115.10.1080/00222931108692911Search in Google Scholar

Thomas, O. (1920). A further collection of mammals from Jujuy. Ann. Mag. Nat. Hist. ser. 9 5: 188–196.10.1080/00222932008632363Search in Google Scholar

Tirira, D.G. (2012). Comentarios sobre registros notables de murciélagos cola de ratón (Chiroptera, Molossidae) para el Ecuador. In: Tirira, D.F. and Burneo, S.F. (Eds.), Investigación y conservación sobre Murciélagos en el Ecuador. Quito, Ecuador: Pontificia Universidad Católica del Ecuador, Fundación Mamíferos y Conservación y Asociación Ecuatoriana de Mastozoología, pp. 217–232.Search in Google Scholar

Velazco, P.M. (2005). Morphological phylogeny of the bat genus Platyrrhinus Saussure, 1860 (Chiroptera: Phyllostomidae) with the description of four new species. Fieldiana Zool. 2005: 1–53, https://doi.org/10.3158/0015-0754(2005)105[1:MPOTBG]2.0.CO;2.Search in Google Scholar

Velazco, P.M. and Patterson, B.D. (2014). Two new species of yellow-shouldered bats, genus Sturnira Gray, 1842 (Chiroptera, Phyllostomidae) from Costa Rica, Panama and western Ecuador. Zookeys 402: 43–66, https://doi.org/10.3897/zookeys.402.7228.Search in Google Scholar

Venter, P.C., Nitsche, F., Scherwass, A., and Arndt, H. (2018). Discrepancies between molecular and morphological databases of soil ciliates studied for temperate grasslands of Central Europe. Protist 169: 521–538. https://doi.org/10.1016/j.protis.2018.04.001.Search in Google Scholar

Virgilio, M., De Meyer, M., White, I.M., and Backeljau, T. (2009). African Dacus (Diptera: Tephritidae: molecular data and host plant associations do not corroborate morphology based classifications. Mol. Phylogenet. Evol. 51: 531–539, https://doi.org/10.1016/j.ympev.2009.01.003.Search in Google Scholar

Wiens, J.J. and Hollingsworth, B.D. (2000). War of the iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst. Biol. 49: 143–159, https://doi.org/10.1080/10635150050207447.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2020-0068).


Received: 2020-06-01
Accepted: 2021-01-07
Published Online: 2021-02-23
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston